The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The ...The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.展开更多
Compositionally undulating step-graded Al(Ga)InxAs (x = 0.05-0.52) buffers with the following InP layer were grown by metal-organic chemical vapor deposition (MOCVD) on (001) GaAs with a 15° miscut. The d...Compositionally undulating step-graded Al(Ga)InxAs (x = 0.05-0.52) buffers with the following InP layer were grown by metal-organic chemical vapor deposition (MOCVD) on (001) GaAs with a 15° miscut. The dislocation dis- tribution and tilts of the epilayers were examined using x-ray rocking curve and (004) reciprocal space maps (RSM) along two orthogonal (110) directions. The results suggested that such reverse-graded layers have different effects on a and 13 dislocations. A higher dislocation density was observed along the [ 110] direction and an epilayer tilt of - 1.43° was attained in the [1-10] direction when a reverse-graded layer strategy was employed. However, for conventional step-graded samples, the dislocation density is normally higher along the [1-10] direction.展开更多
Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by...Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by irregular load on the ground or underground at a certain point with two-dimensional and three-dimensional shapes. We compared the difference between the simplified model and the irregular model. Finally,the vertical displacements near the irregular load and the distribution of horizontal tilt are presented.The results show that,compared with the point simplified model,the irregular load model has certain advantages for describing the near field. The establishment of a twodimensional irregular load model can help with the calculation of the modal vector superposition after load scattering. The three-dimensional irregular load model can redistribute load through different weights given to the scattered points after the load scattering,and then obtain displacement with the vector calculation method. The results of vector superposition calculation from the scattered irregular load both in two-dimensions and three-dimensions are all convergent obviously as grids become denser,and it is shown that the calculation method is correct and feasible.展开更多
In this paper,we introduce theτ_([n])-mutations of a class of Koszul algebra and prove that for the Koszul algebra with the global dimension≤n,if its Koszul dual is an admissible(n-1)-translation algebra,then the qu...In this paper,we introduce theτ_([n])-mutations of a class of Koszul algebra and prove that for the Koszul algebra with the global dimension≤n,if its Koszul dual is an admissible(n-1)-translation algebra,then the quiver of endomorphism algebra of n-APR tilting module can be realized byτ_([n])-mutation.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide i...Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide invaluable structural information of crystalline materials,albeit it remains greatly challenging to nanocrystals due to the arduousness of accurate zone axis adjustment.Herein,a homemade software package,called SmartAxis,is developed for rapid yet accurate zone axis alignment of nanocrystals.Incident electron beam tilt is employed as an eccentric goniometer to measure the angular deviation of a crystal to a zone axis,and then serves as a linkage to calculate theαandβtilts of goniometer based on an accurate quantitative relationship.In this way,high-resolution imaging of one identical small Au nanocrystal,as well as electron beam-sensitive MIL-101 metal-organic framework crystals,along multiple zone axes,was performed successfully by using this accurate,time-and electron dose-saving zone axis alignment software package.展开更多
Background:The risk of internal fixation failure remains relatively high in stable femoral neck fracture(FNF)(Garden I or II).Preoperative sagittal displacement of the femoral head has been proposed as a potential inf...Background:The risk of internal fixation failure remains relatively high in stable femoral neck fracture(FNF)(Garden I or II).Preoperative sagittal displacement of the femoral head has been proposed as a potential influencing factor.This study aimed to evaluate the impact of sagittal displacement on the outcomes of cannulated screw internal fixation(CSIF)in patients with stable FNF(Garden I or II)by reconstructing the axial sagittal oblique plane of the fracture using preoperative computed tomography(CT)imaging.Methods:This study included 167 patients with FNF who underwent CSIF.The sagittal tilt angle of the femoral head(STAFH)was evaluated using three-dimensional CT(3D-CT).The distribution of preoperative STAFH was analyzed,and its independent association with treatment failure was assessed.Treatment failure was defined as the need for revision surgery within 2 years postoperatively due to avascular necrosis,nonunion,or internal fixation failure.Results:Among the 167 patients,9(5.4%)exhibited anterior tilt(AT)of the femoral head,158(94.60%)presented with posterior tilt(PT).A total of 50 patients(29.9%)demonstrated excessive sagittal displacement(AT≥10°or PT≥20°).In the failure group,80.0%of patients had excessive sagittal displacement compared to 28.1%in the healed group.Excessive sagittal displacement was significantly associated with an increased risk of surgical failure(odds ratio:11.953,95%CI:3.656-39.083,p<0.05).Conclusions:In patients with Garden I or II FNF,greater preoperative sagittal displacement of the femoral head was correlated with a higher likelihood of CSIF failure.AT≥10°or PT≥20°were identified as independent predictors of CSIF failure in FNF patients.Nevertheless,these findings still require confirmation through prospective,multi-center clinical trials with large sample sizes.展开更多
Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir...Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.展开更多
Known as the House in the Loire,the three-storey building looks like the victim of a flood that once swept it away,but appearances can be misleading.Walking along the Loire River,near the town of Lavau-sur-Loire,you c...Known as the House in the Loire,the three-storey building looks like the victim of a flood that once swept it away,but appearances can be misleading.Walking along the Loire River,near the town of Lavau-sur-Loire,you can see a rather unusual sight-a tilted building located right in the middle of the river.展开更多
The electro-hydrostatic actuator(EHA)pump is required to operate in a wide range of pressures and speeds to meet the variable output power demands.However,the reliable operation range of EHA pumps is restricted,and th...The electro-hydrostatic actuator(EHA)pump is required to operate in a wide range of pressures and speeds to meet the variable output power demands.However,the reliable operation range of EHA pumps is restricted,and the cylinder block tilting is considered a serious factor.This paper presents an analytical approach for evaluating the critical operation range of EHA pumps based on a criterion for cylinder tilting states.It explicitly reveals the fundamental principle of the cylinder block tilting limiting the operation range.The criterion is verified with the measured tilting angle and leakage flow.Results show that the calculated critical conditions accurately identify the inflection point of performance changes.Beyond the critical operation range,the severe cylinder block tilting leads to a sharp increase in leakage and may even result in a sudden failure.Furthermore,the impacts of the center spring force,the piston-slipper assembly mass,and the position of the spline reaction on the critical operation range are investigated.展开更多
Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation...Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation of damaging surface winds were applied to investigate the detailed processes at the mature stage of a squall line in a complicated real-world scenario.It is shown that environmental vertical wind shear was adequately strong to cause a shearing vorticity,and the shearing vorticity was comparable to the baroclinic vorticity by a cold pool.The balance led to strong upward motions at the leading edge of the squall line and brought plenty of rainfall.The descending rainfall cooled the surrounding air and entrained the upper-level cold air downward to the lower level,strengthening the cold pool by excessive evaporation and melting.The cold pool accelerated the propagation speed of the squall line and caused extensive wind damage at the surface.Meanwhile,the horizontal vortex lines at the leading edge of the cold pool were lifted by frontal updrafts and tilted to form the anti-cyclonic vortex at the middle level.This maintained and intensified the rearinflow jet behind the apex of bow echo in association with a notable midlevel pressure gradient.The rear-inflow jet was then transported downward to the surface by descending condensate,leading to damaging winds there.Other factors,such as environmental flows,however,contributed less to the damaging surface winds.展开更多
Tilting pair is a key concept in the tilting theory.Let F be an additive subfunctor of the functor Ext_(A)^(1)(-,-).In this paper,we introduce the note of n-F-tilting pair,which is a natural generalization of n-tiltin...Tilting pair is a key concept in the tilting theory.Let F be an additive subfunctor of the functor Ext_(A)^(1)(-,-).In this paper,we introduce the note of n-F-tilting pair,which is a natural generalization of n-tilting pair in the sense of Miyahita.Some propositions and a simplified characterization on n-F-tilting pairs are given.展开更多
Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in ...Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in displacement measurement errors,so that researchers have to do a lot of research on the spot centering algorithm to weaken the above effects,which can treat the symptoms but not the root cause.Starting from the source of the problem,this paper proposes a double focus double peak solution,which uses a reflector to change the direction of the optical path,so that the imaging spots of the designed two optical paths focus on the same CMOS,forming a double peak structure.When laser jitter or target tilt occurs,the center of the two laser spots is shifted,but they move in the same direction,while their relative position remains unchanged.Therefore,the displacement can be characterized by the relative position of the two laser spots,so that laser jitter and target tilt are suppressed from the source.However,the two spots imaged on CMOS form a non-Gaussian distributed double peak structure,so the conventional laser spot centering algorithms are no longer applicable.To this end,a double peak adaptive threshold waveform extraction method combined with grayscale gravity method is proposed for spot centering algorithm,which combines the suppression of laser jitter and target tilt from the source and the improvement of spot positioning precision which represents the displacement measurement precision,and is experimentally verified.展开更多
Topochemical fluorination introduces significant structural distortions and emerging properties in perovskite oxides via substituting oxygen with fluorine.However,the rapid fluorination process and the similarity betw...Topochemical fluorination introduces significant structural distortions and emerging properties in perovskite oxides via substituting oxygen with fluorine.However,the rapid fluorination process and the similarity between F and O render the O/F site occupation and local lattice evolution during fluorination unclear.Here we investigated the atomic-scale O/F exchange in La2CoO4and quantified the lattice distortion of three ordered structures:La_(2)CoO_(3.5)F,La_(2)CoO_(3)F_(2),and La_(2)CoO_(2.5)F_(3)by utilizing aberration-corrected electron microscopy.Atomic-resolved elemental mapping provides direct evidence for the O/F occupancy in interstitial and apical sites.We revealed that apical F ions induce significant octahedral tilting from 178°to 165°,linearly proportional to the occupancy rate;and cause the obvious change in the fine structure O K edge,meanwhile apical O is exchanged into interstitial sites.The strong octahedral tilt leads to the in-plane elongation of the[CoO_(4)F_(2)]octahedra.These findings elucidate the atomic-scale mechanisms of the entire fluorination process and highlight the significant role of F in tuning the octahedral tilt of functional oxides.展开更多
In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the d...In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.展开更多
Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying c...Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying capacity(ampacity).However,the frequent fuse failure caused by the poor thermal transport at the Cu–C heterointerface is still the main factor affecting the ampacity.In this study,we unconventionally leverage atomic distortion at Cu grain boundaries to alter the local atomic environments,thereby placing a premium on noticeable enhancement of phonon coupling at the Cu–C heterointerface.Without introducing any additional materials,interfacial thermal transport can be regulated solely through rational microstructural design.This new strategy effectively improves the interfacial thermal conductance by three-fold,reaching the state-of-the-art level in van der Waals(vdW)interface regulation.It can be an innovative strategy for interfacial thermal management by turning the detrimental grain boundaries into a beneficial thermal transport accelerator.展开更多
The inherent challenges arising from variations in user-captured viewpoints and object orientation disparities in real-world scenarios pose significant difficulties in establishing robust correspondence relationships ...The inherent challenges arising from variations in user-captured viewpoints and object orientation disparities in real-world scenarios pose significant difficulties in establishing robust correspondence relationships between image pairs.Methods based on geometric transformation estimation usually perform affine transformation of the global image for viewpoint correction,which not only increases the time complexity but also generates a large number of redundant features.To solve this problem,this paper proposes an adaptive affine transformation model(AATM)to achieve robust image matching by dividing special regions with pixel information and employing feature extraction algorithms with different granularities.First,the input image is divided into significant and non-significant regions by an adaptive algorithm.Second,for the salient region,the feature point extraction is accelerated by optimizing the longitude angle sampling algorithm and constructing the affine invariant nonlinear scale space,introducing the Hessian integral image and box filter.Then,for the non-significant region of the weak texture scene through the uniform step sampling algorithm,a dense feature description can be obtained in the weak texture scenes,so that more robust features are extracted for both significant and non-significant regions.The results of extensive experiments on two datasets show that the AATM algorithm outperforms similar algorithms in terms of the number of correctly matched pairs,elapsed time,and root mean square error(RMSE),indicating that the AATM can obtain more robust matches in scenes with large angle tilting and scale transformations.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
基金jointly supported by the National(Key)Basic Research and Development(973)Program of China(No.2015CB452803)the National Natural Science Foundation of China(Nos.41475058 and 41375068)+1 种基金the Open Project of the State Key Laboratory of Severe Weather(No.2016LASW-B08)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376065)
文摘Compositionally undulating step-graded Al(Ga)InxAs (x = 0.05-0.52) buffers with the following InP layer were grown by metal-organic chemical vapor deposition (MOCVD) on (001) GaAs with a 15° miscut. The dislocation dis- tribution and tilts of the epilayers were examined using x-ray rocking curve and (004) reciprocal space maps (RSM) along two orthogonal (110) directions. The results suggested that such reverse-graded layers have different effects on a and 13 dislocations. A higher dislocation density was observed along the [ 110] direction and an epilayer tilt of - 1.43° was attained in the [1-10] direction when a reverse-graded layer strategy was employed. However, for conventional step-graded samples, the dislocation density is normally higher along the [1-10] direction.
基金funded by the Earthquake Tracing Oriented Task of Monitoring and Forecasting Department of China Earthquake Administration in 2015(2015020201):the 12th“Five-year Plan”Science and Technology Support Plan of China(2012BAK19B02)
文摘Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by irregular load on the ground or underground at a certain point with two-dimensional and three-dimensional shapes. We compared the difference between the simplified model and the irregular model. Finally,the vertical displacements near the irregular load and the distribution of horizontal tilt are presented.The results show that,compared with the point simplified model,the irregular load model has certain advantages for describing the near field. The establishment of a twodimensional irregular load model can help with the calculation of the modal vector superposition after load scattering. The three-dimensional irregular load model can redistribute load through different weights given to the scattered points after the load scattering,and then obtain displacement with the vector calculation method. The results of vector superposition calculation from the scattered irregular load both in two-dimensions and three-dimensions are all convergent obviously as grids become denser,and it is shown that the calculation method is correct and feasible.
文摘In this paper,we introduce theτ_([n])-mutations of a class of Koszul algebra and prove that for the Koszul algebra with the global dimension≤n,if its Koszul dual is an admissible(n-1)-translation algebra,then the quiver of endomorphism algebra of n-APR tilting module can be realized byτ_([n])-mutation.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the National Key R&D Program of China(No.2021YFA1501002)Thousand Talents Program for Distinguished Young Scholars.X.Li thanks the National Natural Science Foundation of China(No.22309021).
文摘Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide invaluable structural information of crystalline materials,albeit it remains greatly challenging to nanocrystals due to the arduousness of accurate zone axis adjustment.Herein,a homemade software package,called SmartAxis,is developed for rapid yet accurate zone axis alignment of nanocrystals.Incident electron beam tilt is employed as an eccentric goniometer to measure the angular deviation of a crystal to a zone axis,and then serves as a linkage to calculate theαandβtilts of goniometer based on an accurate quantitative relationship.In this way,high-resolution imaging of one identical small Au nanocrystal,as well as electron beam-sensitive MIL-101 metal-organic framework crystals,along multiple zone axes,was performed successfully by using this accurate,time-and electron dose-saving zone axis alignment software package.
基金supported by the National Natural Science Foundation of China(82422045).
文摘Background:The risk of internal fixation failure remains relatively high in stable femoral neck fracture(FNF)(Garden I or II).Preoperative sagittal displacement of the femoral head has been proposed as a potential influencing factor.This study aimed to evaluate the impact of sagittal displacement on the outcomes of cannulated screw internal fixation(CSIF)in patients with stable FNF(Garden I or II)by reconstructing the axial sagittal oblique plane of the fracture using preoperative computed tomography(CT)imaging.Methods:This study included 167 patients with FNF who underwent CSIF.The sagittal tilt angle of the femoral head(STAFH)was evaluated using three-dimensional CT(3D-CT).The distribution of preoperative STAFH was analyzed,and its independent association with treatment failure was assessed.Treatment failure was defined as the need for revision surgery within 2 years postoperatively due to avascular necrosis,nonunion,or internal fixation failure.Results:Among the 167 patients,9(5.4%)exhibited anterior tilt(AT)of the femoral head,158(94.60%)presented with posterior tilt(PT).A total of 50 patients(29.9%)demonstrated excessive sagittal displacement(AT≥10°or PT≥20°).In the failure group,80.0%of patients had excessive sagittal displacement compared to 28.1%in the healed group.Excessive sagittal displacement was significantly associated with an increased risk of surgical failure(odds ratio:11.953,95%CI:3.656-39.083,p<0.05).Conclusions:In patients with Garden I or II FNF,greater preoperative sagittal displacement of the femoral head was correlated with a higher likelihood of CSIF failure.AT≥10°or PT≥20°were identified as independent predictors of CSIF failure in FNF patients.Nevertheless,these findings still require confirmation through prospective,multi-center clinical trials with large sample sizes.
文摘Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.
文摘Known as the House in the Loire,the three-storey building looks like the victim of a flood that once swept it away,but appearances can be misleading.Walking along the Loire River,near the town of Lavau-sur-Loire,you can see a rather unusual sight-a tilted building located right in the middle of the river.
基金supported in part by the National Natural Science Foundation of China(No.51890882)the National Natural Science Foundation of China(No.52305075)+1 种基金the China Postdoctoral Science Foundation(No.2023M733065)the Aeronautical Science Foundation of China(No.20220028076003)。
文摘The electro-hydrostatic actuator(EHA)pump is required to operate in a wide range of pressures and speeds to meet the variable output power demands.However,the reliable operation range of EHA pumps is restricted,and the cylinder block tilting is considered a serious factor.This paper presents an analytical approach for evaluating the critical operation range of EHA pumps based on a criterion for cylinder tilting states.It explicitly reveals the fundamental principle of the cylinder block tilting limiting the operation range.The criterion is verified with the measured tilting angle and leakage flow.Results show that the calculated critical conditions accurately identify the inflection point of performance changes.Beyond the critical operation range,the severe cylinder block tilting leads to a sharp increase in leakage and may even result in a sudden failure.Furthermore,the impacts of the center spring force,the piston-slipper assembly mass,and the position of the spline reaction on the critical operation range are investigated.
基金Research(2020B0301030004)National Natural Science Foundation of China(42275002)+3 种基金Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0890)Scientific and Technological Project of Chongqing Meteorological Service(YWJSGG-202124)Key Innovation Team of China Meteorological Administration(CMA2022ZD09)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP209)。
文摘Observational analyses and convection-permitting simulations are conducted to study an extreme event of damaging surface winds within a bow-shaped squall line over South China.Prevailing explanations for the formation of damaging surface winds were applied to investigate the detailed processes at the mature stage of a squall line in a complicated real-world scenario.It is shown that environmental vertical wind shear was adequately strong to cause a shearing vorticity,and the shearing vorticity was comparable to the baroclinic vorticity by a cold pool.The balance led to strong upward motions at the leading edge of the squall line and brought plenty of rainfall.The descending rainfall cooled the surrounding air and entrained the upper-level cold air downward to the lower level,strengthening the cold pool by excessive evaporation and melting.The cold pool accelerated the propagation speed of the squall line and caused extensive wind damage at the surface.Meanwhile,the horizontal vortex lines at the leading edge of the cold pool were lifted by frontal updrafts and tilted to form the anti-cyclonic vortex at the middle level.This maintained and intensified the rearinflow jet behind the apex of bow echo in association with a notable midlevel pressure gradient.The rear-inflow jet was then transported downward to the surface by descending condensate,leading to damaging winds there.Other factors,such as environmental flows,however,contributed less to the damaging surface winds.
基金Supported by the National Natural Science Foundation of China(Grant No.12101003)the Natural Science Foundation of Anhui Province(Grant No.2108085QA07).
文摘Tilting pair is a key concept in the tilting theory.Let F be an additive subfunctor of the functor Ext_(A)^(1)(-,-).In this paper,we introduce the note of n-F-tilting pair,which is a natural generalization of n-tilting pair in the sense of Miyahita.Some propositions and a simplified characterization on n-F-tilting pairs are given.
基金the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Committee(No.20S31908300)。
文摘Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in displacement measurement errors,so that researchers have to do a lot of research on the spot centering algorithm to weaken the above effects,which can treat the symptoms but not the root cause.Starting from the source of the problem,this paper proposes a double focus double peak solution,which uses a reflector to change the direction of the optical path,so that the imaging spots of the designed two optical paths focus on the same CMOS,forming a double peak structure.When laser jitter or target tilt occurs,the center of the two laser spots is shifted,but they move in the same direction,while their relative position remains unchanged.Therefore,the displacement can be characterized by the relative position of the two laser spots,so that laser jitter and target tilt are suppressed from the source.However,the two spots imaged on CMOS form a non-Gaussian distributed double peak structure,so the conventional laser spot centering algorithms are no longer applicable.To this end,a double peak adaptive threshold waveform extraction method combined with grayscale gravity method is proposed for spot centering algorithm,which combines the suppression of laser jitter and target tilt from the source and the improvement of spot positioning precision which represents the displacement measurement precision,and is experimentally verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52322212,52025025,5225040212474001)the National Key R&D Program of China(Grant Nos.2022YFA1403203 and 2023YFA1406300)。
文摘Topochemical fluorination introduces significant structural distortions and emerging properties in perovskite oxides via substituting oxygen with fluorine.However,the rapid fluorination process and the similarity between F and O render the O/F site occupation and local lattice evolution during fluorination unclear.Here we investigated the atomic-scale O/F exchange in La2CoO4and quantified the lattice distortion of three ordered structures:La_(2)CoO_(3.5)F,La_(2)CoO_(3)F_(2),and La_(2)CoO_(2.5)F_(3)by utilizing aberration-corrected electron microscopy.Atomic-resolved elemental mapping provides direct evidence for the O/F occupancy in interstitial and apical sites.We revealed that apical F ions induce significant octahedral tilting from 178°to 165°,linearly proportional to the occupancy rate;and cause the obvious change in the fine structure O K edge,meanwhile apical O is exchanged into interstitial sites.The strong octahedral tilt leads to the in-plane elongation of the[CoO_(4)F_(2)]octahedra.These findings elucidate the atomic-scale mechanisms of the entire fluorination process and highlight the significant role of F in tuning the octahedral tilt of functional oxides.
文摘In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.
基金financial support from the National Natural Science Foundation of China(Nos.52222602 and 52476052)Fundamental Research Funds for the Central Universities(FRF-TP-22-001C1 and FRF-EYIT-23-05).
文摘Copper–carbon(Cu–C)composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu,for example,a two-order-of-magnitude increase in current-carrying capacity(ampacity).However,the frequent fuse failure caused by the poor thermal transport at the Cu–C heterointerface is still the main factor affecting the ampacity.In this study,we unconventionally leverage atomic distortion at Cu grain boundaries to alter the local atomic environments,thereby placing a premium on noticeable enhancement of phonon coupling at the Cu–C heterointerface.Without introducing any additional materials,interfacial thermal transport can be regulated solely through rational microstructural design.This new strategy effectively improves the interfacial thermal conductance by three-fold,reaching the state-of-the-art level in van der Waals(vdW)interface regulation.It can be an innovative strategy for interfacial thermal management by turning the detrimental grain boundaries into a beneficial thermal transport accelerator.
基金Supported by the National Natural Science Foundation of China(No.61971162,61771186)the Natural Science Foundation of Heilongjiang Province(No.PL2024 F023)+1 种基金the Fundamental Scientific Research Funds of Heilongjiang Province(No.2022-KYYWF-1050)the Open Research Fund of National Mobile Communications Research Laboratory in Southeast University(No.2023D07).
文摘The inherent challenges arising from variations in user-captured viewpoints and object orientation disparities in real-world scenarios pose significant difficulties in establishing robust correspondence relationships between image pairs.Methods based on geometric transformation estimation usually perform affine transformation of the global image for viewpoint correction,which not only increases the time complexity but also generates a large number of redundant features.To solve this problem,this paper proposes an adaptive affine transformation model(AATM)to achieve robust image matching by dividing special regions with pixel information and employing feature extraction algorithms with different granularities.First,the input image is divided into significant and non-significant regions by an adaptive algorithm.Second,for the salient region,the feature point extraction is accelerated by optimizing the longitude angle sampling algorithm and constructing the affine invariant nonlinear scale space,introducing the Hessian integral image and box filter.Then,for the non-significant region of the weak texture scene through the uniform step sampling algorithm,a dense feature description can be obtained in the weak texture scenes,so that more robust features are extracted for both significant and non-significant regions.The results of extensive experiments on two datasets show that the AATM algorithm outperforms similar algorithms in terms of the number of correctly matched pairs,elapsed time,and root mean square error(RMSE),indicating that the AATM can obtain more robust matches in scenes with large angle tilting and scale transformations.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.