The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay(JZB),in which the operator-splitting technique was used and the‘dry and wet’method was introduced.The influence c...The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay(JZB),in which the operator-splitting technique was used and the‘dry and wet’method was introduced.The influence caused by JZB reclamation on the surface level,residual currents,tidal system and tidal energy of M2 tidal system were predicted and analyzed.The results show that JZB reclamation has slight impact on the M2 tidal system,in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater,but in other areas the changes are smaller,in which the currents have a change of around 1%,while the residual currents change ranges from 1.82%–9.61%.After reclamation,the tidal energy fluxes increase by 2.62%–5.24%inside and outside the JZB mouth,but decrease by 20.21%–87.23%near Qian Bay and the reclamation area.展开更多
A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps du...A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.展开更多
Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide(CO2), methane(CH4)emission, and environmental factors, w...Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide(CO2), methane(CH4)emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO2 and CH4from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO2 and CH4emissions from the two marshes showed pronounced seasonal variations. The CO2 and CH4emissions from both marshes demonstrated significant positive correlations with the air/soil temperature(p 〈 0.01), but negative correlations with the soil electrical conductivity and the pore water/tide water Cl-and SO42- (p 〈 0.01). The results indicate no significant difference in the CO2 emissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH4 emissions between the two sites(p 〈 0.01). Although future sea-level rise and saltwater intrusion could reduce the CH4 emissions from the estuarine freshwater marshes, these factors had little effect on the CO2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients.展开更多
With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined proces...Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined processes operating over a variety of spatial and temporal scales.As a traditional research highlight,the role of regular hydrodynamic processes such as tides,waves,and river flows have been explored comprehensively with fruitful outcomes.Over past decades,the changing environment(e.g.,sea level rise,increasing anthropogenic activities,and extreme weather conditions)has attracted more attention with many reported insightful results.More recent advances indicate that biological activities play a critical role in tidal flat-marsh morphodynamics but are still poorly understood.The field of research that connects the bio-logical and physical processes is commonly described as"biogeomorphology"and requires the joint efforts by scientists from multiple dis-ciplines ranging from hydraulics,ecology,and geography to sociology.This review aims to provide a synthesis of the current research status of tidal flat-marsh morphodynamics,with a particular emphasis on the understanding of various processes and feedbacks underlying the devel-opment of morphodynamic models.Some future research needs and challenges are identified to facilitate a more sustainable management strategy for tidal flats and saltmarshes under climate change.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass...The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.展开更多
The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energ...The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3 D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.展开更多
On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A co...On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A computation example indicates that compared to traditional two-dimensional computation methods, the body-fitted simulation has an advantange of better coincidence with the real and can be adopted in simulating flow fields in tidal estuaries.展开更多
Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components tec...Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.展开更多
Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydro...Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.展开更多
To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and ancho...To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and anchor chain with Superflex.The model was established via the numerical simulation tool Orcaflex,which considers the combined effects of wind,waves,and currents.A time-domain coupled dynamic analysis was conducted on the performance of the three mooring schemes under various tidal conditions to determine the mooring cable tension and platform motion response.Furthermore,the mooring system with an anchor chain and Superflex was optimized,with a focus on analyzing the effects of the Superflex length,the diameter of the anchor chains,and the mooring radius.The mooring system with the anchor chain and Superflex exhibits more controllable and stable mooring performance in areas with large tidal variations,so that it more effectively maintains the required mooring tension level.These findings not only provide a reference for the feasibility and optimization design of photovoltaic systems in areas with large tidal variations but also offer valuable experience for the sustainable application of clean energy under specific environmental conditions.展开更多
This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A control...This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A controller was applied to achieve the maximum power control of tidal current turbine on a wide range of water current speed change. A dynamic model and simulation of the energy system coupled with current change are presented. The measured DC voltage and DC current are used to determine the position of maximum power point that controls the DC/DC boost converter duty cycle depending on the Hill Climb Search (HCS) algorithm. This algorithm doesn’t require any information or measurements about current’s speed change or generator’s characteristics. A supercapacitor added to fix the load voltage despite of tidal current speed or load variations. Simulation results show the effectiveness of the controller proposed system.展开更多
To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce t...To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.展开更多
This study aims to analyze spatial landuse and farming system of reclamated tidal lowland in South Sumatra, Indonesia by using remote sensing technology and GIS in knowing the distribution of landuse change of tidal l...This study aims to analyze spatial landuse and farming system of reclamated tidal lowland in South Sumatra, Indonesia by using remote sensing technology and GIS in knowing the distribution of landuse change of tidal lowland. From these conditions, it can see cropping patterns on each of the secondary block and its relation to the condition of the water system network. The study was carried out in Delta Saleh areas. The used methodology was field survey and remote sensing technique. It was combined with GIS technology for spatial analysis. Over the last 11 years (1992-2002), a decline in the paddy field area is from 23,619.4 ha to 18,518.40 ha (27.65%). A decrease of river acreage (water body) occurred from 6,643.53 ha to 6,559.83 ha. In 1992 it has not detected any coconut plantation, while in 2001 it showed an area of coconut plantation 3,422.84 ha and 3,822.84 ha in 20l l. Significant changes are also presented in primary mangrove forest, widespread declining around 1,940.88 ha (147.20%). Most of the mangrove forest was converted into secondary mangrove forest and scrub. Linkage with topography type showed that the land with topography Type A was majority for paddy fields 250.28-262.80 ha (62.72%-65.59%). Mixed crop fields were in second place with acreage of 90.66-107.36 ha (22.72%-26.80%). The land with topography Type B showed the widest paddy fields (283.14-314.20 ha or 70.70%-78.48%), followed by upland crops. The land with topography Type C showed that paddy fields were 283.03-300.41 ha (70.66%-75.02 %), followed by upland crops 94.85-102.78 ha (23.69%-25.66%), and coconut was the smallest 0.09-0.27 ha. Generally, the cropping index was 100 on PS-I (planting season 1) for BL-I (business land 1) and BL-2 planted with paddy fields, while the PS-2 are generally not cultivated land (fallow).展开更多
Estuaries are often a significant source of atmospheric CO_(2).However,studies of carbonate systems have predominantly focused on large estuaries,while smaller estuaries have scarcely been documented.In this study,we ...Estuaries are often a significant source of atmospheric CO_(2).However,studies of carbonate systems have predominantly focused on large estuaries,while smaller estuaries have scarcely been documented.In this study,we collected surface and bottom seawater carbonate samples in the subtropical Jiulong River Estuary across different tidal levels from 2019 to 2021.The results showed that estuarine mixing of freshwater from the river with seawater was the dominant factor influencing the estuarine carbonate system.Moreover,estuarine mixing is concomitantly impacted by the net metabolism of biological production and decomposition,groundwater input,release of CO_(2)from the estuary,and precipitation or dissolution of calcium carbonate.The estuarine partial pressure of CO_(2)(pCO_(2))varied from 530μatm to 7715μatm,which represents a strong source of atmospheric CO_(2).The mean annual air-sea CO_(2)flux estimated from three different parameterized equations was approximately(25.63±10.25)mol/(m2·a).Furthermore,the annual emission to the atmosphere was approximately(0.031±0.012)Tg C,which accounts for a mere 0.0077%−0.015%of global estuarine emissions.Dissolved inorganic carbon(DIC),total alkalinity(TA)and the pCO_(2)exhibited high variability throughout the tidal cycle across all cruises.Specifically,the disparities observed between DIC and TA during low and high tides at identical stations during all cruises ranged from approximately 15%to 30%.The variance in the pCO_(2)was even more pronounced,ranging from approximately 30%to 40%.Thus,tidal discrepancies may need to be taken into consideration to estimate the CO_(2)flux from estuarine systems more accurately.展开更多
In this work, a new device for tidal energy conversion is presented. The main purpose of this research is to investigate the energy conversion of tidal energy into electrical one by building a small scale prototype us...In this work, a new device for tidal energy conversion is presented. The main purpose of this research is to investigate the energy conversion of tidal energy into electrical one by building a small scale prototype using a pneumatic system representing the energy conversion device. The tidal energy conversion device consists of a concrete in cylindrical shape, a moving base that moves inside the concrete cylindrical body and two single acting pistons connected to a power turbine. The system specifications that mainly affect the amount of energy are the spring stiffness and hose diameter. It was found that there is a possibility to convert the tidal energy into electrical energy using the designed prototype. The maximum amount of electricity generated using the proposed prototype was about 5 Volts.展开更多
This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magn...This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magnetic field model,the limited memory quasi-Newton method(L-BFGS)is used to directly invert seawater flow velocities.We used the radial component of the induced magnetic field as the observed data,constructed an L_(2)-norm-based data misfit term using theoretical response and observed data,and applied smoothness constraints to the ocean flow velocity.The results agree well with the widely used HAMTIDE model in low-and mid-latitude regions,which is attributed to Macao Science Satellite-1's(MSS-1)unique low-inclination orbit of full coverage in these areas.These findings underscore MSS-1's potential to advance research on tidal-induced magnetic fields and their applications in ocean dynamics studies.展开更多
Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents followi...Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.展开更多
Arsenic(As)pollution in coastal wetlands has been receiving growing attention.However,the exact mechanism of As mobility driven by tidal action is still not completely understood.The results reveal that lower total As...Arsenic(As)pollution in coastal wetlands has been receiving growing attention.However,the exact mechanism of As mobility driven by tidal action is still not completely understood.The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment(FE),with the highest concentration being 7.1μg/L,and As(V)was the predominant species.However,elevated levels of total As in solution were found in the flooded treatment(FL),with a maximum value of 14.5μg/L after 30 days,and As(III)was the predominant form.The results of dissolved organicmatter(DOM)suggest that in the early to mid-stages of the incubation,fulvic acid-like substances might be utilized by microorganisms as electron donors or shuttle bodies,facilitating the reductive release of As/Fe from sediments.Both flood-ebb and flooded treatments promoted the transformation of crystalline iron hydrous oxides-bound As into residual forms.However,prolonged flooded conditions more readily facilitated the formation of specific adsorption forms of As and the reduction of crystalline iron hydrous oxides-bound As,increasing As mobility.In addition,the flood-ebb tides have been found to increase the diversity ofmicrobial populations.The main microbial genera in the flood-ebb treatment included Salinimicrobium,Erythrobacter,Yangia,Sulfitobacter,and Marinobacter.Bacillus,Psychrobacter,and Yangia showed a significant correlation with As(V).In flooded treatment,Bacillus,Pseudomonas,and Geothermobacter played a major role in the reduction and release of As.This study significantly contributes to the current understanding of how As behaves in diverse natural environments.展开更多
文摘The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay(JZB),in which the operator-splitting technique was used and the‘dry and wet’method was introduced.The influence caused by JZB reclamation on the surface level,residual currents,tidal system and tidal energy of M2 tidal system were predicted and analyzed.The results show that JZB reclamation has slight impact on the M2 tidal system,in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater,but in other areas the changes are smaller,in which the currents have a change of around 1%,while the residual currents change ranges from 1.82%–9.61%.After reclamation,the tidal energy fluxes increase by 2.62%–5.24%inside and outside the JZB mouth,but decrease by 20.21%–87.23%near Qian Bay and the reclamation area.
基金The Key Basic Program of Science and Technology Commission of Shanghai Municipality(No.08110511700)the ShanghaiLeading Academic Discipline Program(No.S30503)
文摘A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.
基金was supported by the National Natural Science Foundation of China(No.41371127)the Program for Innovative Research Teams of Fujian Normal University(No.IRTL1205)+1 种基金the Key Sciences and Technology Project of Fujian Province(No.2014R1034-1)the Graduate Innovation Project of the School of Geographical Sciences of Fujian Normal University(No.GY201501)
文摘Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide(CO2), methane(CH4)emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO2 and CH4from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO2 and CH4emissions from the two marshes showed pronounced seasonal variations. The CO2 and CH4emissions from both marshes demonstrated significant positive correlations with the air/soil temperature(p 〈 0.01), but negative correlations with the soil electrical conductivity and the pore water/tide water Cl-and SO42- (p 〈 0.01). The results indicate no significant difference in the CO2 emissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH4 emissions between the two sites(p 〈 0.01). Although future sea-level rise and saltwater intrusion could reduce the CH4 emissions from the estuarine freshwater marshes, these factors had little effect on the CO2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients.
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
基金supported by the National Natural Science Foundation of China(Grants No.41976156 and 51925905)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200077)+2 种基金the Nantong Science and Technology Bureau(Grant No.MS 12021083)the Marine Science and Technology Innovation Project of Jiangsu Province(Grant No.JSZRHYKJ202105)the Fundamental Research Funds for the Central Universities(Grant No.B210204022).
文摘Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined processes operating over a variety of spatial and temporal scales.As a traditional research highlight,the role of regular hydrodynamic processes such as tides,waves,and river flows have been explored comprehensively with fruitful outcomes.Over past decades,the changing environment(e.g.,sea level rise,increasing anthropogenic activities,and extreme weather conditions)has attracted more attention with many reported insightful results.More recent advances indicate that biological activities play a critical role in tidal flat-marsh morphodynamics but are still poorly understood.The field of research that connects the bio-logical and physical processes is commonly described as"biogeomorphology"and requires the joint efforts by scientists from multiple dis-ciplines ranging from hydraulics,ecology,and geography to sociology.This review aims to provide a synthesis of the current research status of tidal flat-marsh morphodynamics,with a particular emphasis on the understanding of various processes and feedbacks underlying the devel-opment of morphodynamic models.Some future research needs and challenges are identified to facilitate a more sustainable management strategy for tidal flats and saltmarshes under climate change.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金The National Natural Science Foundation of China under contract Nos 41006053 and 40576023the Ministry of Water Resources' Special Funds for Scientific Research on Public Causes under contract No.201001072the Program for Innovative Research Team of Zhejiang Province under contract No.2009F20024
文摘The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.
基金supported by the National Key R&D Program of China (No.2017YFC1404202)the Key Program Project of the National Natural Science Foundation of China (No.51137002)+2 种基金the Key Program Project of the Jiangsu Science Foundation (No.SBK201150230)the 111 Project (No.B12032)the Research and Innovation Project for Postgraduate Students of the Universities of Jiangsu Province(No.CXZZ13_0259)
文摘The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3 D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.
文摘On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A computation example indicates that compared to traditional two-dimensional computation methods, the body-fitted simulation has an advantange of better coincidence with the real and can be adopted in simulating flow fields in tidal estuaries.
基金National Natural Science Foundation of China No.40131020 No.40173030 Shanghai Science Committee and Environmental Bureau Program Shanghai Basic Science Research Key Program No.02DJ14029 Foundation for the Excellent You
文摘Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.
基金Project supported by the National Natural Science of China (Nos. 50505043 and 50735004)the National High Tech R&D Program (863) of China (No. 2007AA05Z443)
文摘Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200700).
文摘To address the mooring issues of floating photovoltaic systems in areas with large tidal variations,three mooring schemes were designed and compared in this paper:anchor chain,anchor chain with added weights,and anchor chain with Superflex.The model was established via the numerical simulation tool Orcaflex,which considers the combined effects of wind,waves,and currents.A time-domain coupled dynamic analysis was conducted on the performance of the three mooring schemes under various tidal conditions to determine the mooring cable tension and platform motion response.Furthermore,the mooring system with an anchor chain and Superflex was optimized,with a focus on analyzing the effects of the Superflex length,the diameter of the anchor chains,and the mooring radius.The mooring system with the anchor chain and Superflex exhibits more controllable and stable mooring performance in areas with large tidal variations,so that it more effectively maintains the required mooring tension level.These findings not only provide a reference for the feasibility and optimization design of photovoltaic systems in areas with large tidal variations but also offer valuable experience for the sustainable application of clean energy under specific environmental conditions.
文摘This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A controller was applied to achieve the maximum power control of tidal current turbine on a wide range of water current speed change. A dynamic model and simulation of the energy system coupled with current change are presented. The measured DC voltage and DC current are used to determine the position of maximum power point that controls the DC/DC boost converter duty cycle depending on the Hill Climb Search (HCS) algorithm. This algorithm doesn’t require any information or measurements about current’s speed change or generator’s characteristics. A supercapacitor added to fix the load voltage despite of tidal current speed or load variations. Simulation results show the effectiveness of the controller proposed system.
文摘To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.
文摘This study aims to analyze spatial landuse and farming system of reclamated tidal lowland in South Sumatra, Indonesia by using remote sensing technology and GIS in knowing the distribution of landuse change of tidal lowland. From these conditions, it can see cropping patterns on each of the secondary block and its relation to the condition of the water system network. The study was carried out in Delta Saleh areas. The used methodology was field survey and remote sensing technique. It was combined with GIS technology for spatial analysis. Over the last 11 years (1992-2002), a decline in the paddy field area is from 23,619.4 ha to 18,518.40 ha (27.65%). A decrease of river acreage (water body) occurred from 6,643.53 ha to 6,559.83 ha. In 1992 it has not detected any coconut plantation, while in 2001 it showed an area of coconut plantation 3,422.84 ha and 3,822.84 ha in 20l l. Significant changes are also presented in primary mangrove forest, widespread declining around 1,940.88 ha (147.20%). Most of the mangrove forest was converted into secondary mangrove forest and scrub. Linkage with topography type showed that the land with topography Type A was majority for paddy fields 250.28-262.80 ha (62.72%-65.59%). Mixed crop fields were in second place with acreage of 90.66-107.36 ha (22.72%-26.80%). The land with topography Type B showed the widest paddy fields (283.14-314.20 ha or 70.70%-78.48%), followed by upland crops. The land with topography Type C showed that paddy fields were 283.03-300.41 ha (70.66%-75.02 %), followed by upland crops 94.85-102.78 ha (23.69%-25.66%), and coconut was the smallest 0.09-0.27 ha. Generally, the cropping index was 100 on PS-I (planting season 1) for BL-I (business land 1) and BL-2 planted with paddy fields, while the PS-2 are generally not cultivated land (fallow).
基金The Scientific Research Foundation of Third Institute of Oceanography,MNR under contract Nos.2022001,2020017,2023008 and 2019018the Natural Science Foundation of Fujian Province of China under contract No.2023J01209+1 种基金the National Natural Science Foundation of China under contract No.4237061213the Fujian Science and Technology Innovation Leader Project.
文摘Estuaries are often a significant source of atmospheric CO_(2).However,studies of carbonate systems have predominantly focused on large estuaries,while smaller estuaries have scarcely been documented.In this study,we collected surface and bottom seawater carbonate samples in the subtropical Jiulong River Estuary across different tidal levels from 2019 to 2021.The results showed that estuarine mixing of freshwater from the river with seawater was the dominant factor influencing the estuarine carbonate system.Moreover,estuarine mixing is concomitantly impacted by the net metabolism of biological production and decomposition,groundwater input,release of CO_(2)from the estuary,and precipitation or dissolution of calcium carbonate.The estuarine partial pressure of CO_(2)(pCO_(2))varied from 530μatm to 7715μatm,which represents a strong source of atmospheric CO_(2).The mean annual air-sea CO_(2)flux estimated from three different parameterized equations was approximately(25.63±10.25)mol/(m2·a).Furthermore,the annual emission to the atmosphere was approximately(0.031±0.012)Tg C,which accounts for a mere 0.0077%−0.015%of global estuarine emissions.Dissolved inorganic carbon(DIC),total alkalinity(TA)and the pCO_(2)exhibited high variability throughout the tidal cycle across all cruises.Specifically,the disparities observed between DIC and TA during low and high tides at identical stations during all cruises ranged from approximately 15%to 30%.The variance in the pCO_(2)was even more pronounced,ranging from approximately 30%to 40%.Thus,tidal discrepancies may need to be taken into consideration to estimate the CO_(2)flux from estuarine systems more accurately.
文摘In this work, a new device for tidal energy conversion is presented. The main purpose of this research is to investigate the energy conversion of tidal energy into electrical one by building a small scale prototype using a pneumatic system representing the energy conversion device. The tidal energy conversion device consists of a concrete in cylindrical shape, a moving base that moves inside the concrete cylindrical body and two single acting pistons connected to a power turbine. The system specifications that mainly affect the amount of energy are the spring stiffness and hose diameter. It was found that there is a possibility to convert the tidal energy into electrical energy using the designed prototype. The maximum amount of electricity generated using the proposed prototype was about 5 Volts.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation。
文摘This study presents an inversion method to recover the tidal flow velocity using tidal signals extracted from geomagnetic satellite dataset.By integrating the latest Earth conductivity profile and the Earth's magnetic field model,the limited memory quasi-Newton method(L-BFGS)is used to directly invert seawater flow velocities.We used the radial component of the induced magnetic field as the observed data,constructed an L_(2)-norm-based data misfit term using theoretical response and observed data,and applied smoothness constraints to the ocean flow velocity.The results agree well with the widely used HAMTIDE model in low-and mid-latitude regions,which is attributed to Macao Science Satellite-1's(MSS-1)unique low-inclination orbit of full coverage in these areas.These findings underscore MSS-1's potential to advance research on tidal-induced magnetic fields and their applications in ocean dynamics studies.
基金supported by the National Natural Sci-ence Foundation of China(No.U2106204)the Shanxi Water Conservancy Science and Technology Re-search and Extension Project(No.2023ZF19).
文摘Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.
基金supported by the National Natural Science Foundation of China(No.41977283)the Qing Lan Project of Jiangsu Province of China.
文摘Arsenic(As)pollution in coastal wetlands has been receiving growing attention.However,the exact mechanism of As mobility driven by tidal action is still not completely understood.The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment(FE),with the highest concentration being 7.1μg/L,and As(V)was the predominant species.However,elevated levels of total As in solution were found in the flooded treatment(FL),with a maximum value of 14.5μg/L after 30 days,and As(III)was the predominant form.The results of dissolved organicmatter(DOM)suggest that in the early to mid-stages of the incubation,fulvic acid-like substances might be utilized by microorganisms as electron donors or shuttle bodies,facilitating the reductive release of As/Fe from sediments.Both flood-ebb and flooded treatments promoted the transformation of crystalline iron hydrous oxides-bound As into residual forms.However,prolonged flooded conditions more readily facilitated the formation of specific adsorption forms of As and the reduction of crystalline iron hydrous oxides-bound As,increasing As mobility.In addition,the flood-ebb tides have been found to increase the diversity ofmicrobial populations.The main microbial genera in the flood-ebb treatment included Salinimicrobium,Erythrobacter,Yangia,Sulfitobacter,and Marinobacter.Bacillus,Psychrobacter,and Yangia showed a significant correlation with As(V).In flooded treatment,Bacillus,Pseudomonas,and Geothermobacter played a major role in the reduction and release of As.This study significantly contributes to the current understanding of how As behaves in diverse natural environments.