A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation...A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.展开更多
This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conv...This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications.展开更多
Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has...Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has focused on developing or improving THz sources,detectors,and applications.At the PBP-CMU Electron Linac Laboratory(PCELL)of the Plasma and Beam Physics Research Facility in Chiang Mai University,high-intensity THz radiation has been generated in the form of coherent transition radiation(TR)and investigated since 2006 for electron beams with energies ranging from 8 to 12 MeV.In this study,we investigate and optimize the coherent TR arising from short electron bunches with energies ranging from 8 to 22 MeV using an upgraded linear-accelerator system with a higher radio-frequency(RF)power system.This radiation is then transported from the accelerator hall to the experimental room,in which the spectrometers are located.Electron-beam simulations are conducted to achieve short bunch lengths and small transverse beam sizes at the TR station.Radiation properties,including the radiation spectrum,angular distribution,and radiation polarization,are thoroughly investigated.The electron-bunch length is evaluated using the measuring system.The radiation-transport line is designed to achieve optimal frequency response and high transmission efficiency.A radiation-transmission efficiency of approximately 80-90%can be achieved with this designed system,along with a pulse energy ranging from 0.17 to 0.25μJ.The expected radiation spectral range covers up to 2 THz with a peak power of 0.5-1.25 MW.This coherent,broadband,and intense THz radiation will serve as a light source for THz spectroscopy and THz time-domain spectroscopy applications at the PCELL in the near future.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy s...This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.展开更多
基金support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation(No.B05F650022),as well as from Chiang Mai University.
文摘A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.
文摘This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications.
基金supported by the National Research Council of Thailand(No.NRCT-5-RSA63004-16)Chiang Mai University.S.Pakluea acknowledges scholarship support from the Science Achievement Scholarship of Thailand(SAST).
文摘Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has focused on developing or improving THz sources,detectors,and applications.At the PBP-CMU Electron Linac Laboratory(PCELL)of the Plasma and Beam Physics Research Facility in Chiang Mai University,high-intensity THz radiation has been generated in the form of coherent transition radiation(TR)and investigated since 2006 for electron beams with energies ranging from 8 to 12 MeV.In this study,we investigate and optimize the coherent TR arising from short electron bunches with energies ranging from 8 to 22 MeV using an upgraded linear-accelerator system with a higher radio-frequency(RF)power system.This radiation is then transported from the accelerator hall to the experimental room,in which the spectrometers are located.Electron-beam simulations are conducted to achieve short bunch lengths and small transverse beam sizes at the TR station.Radiation properties,including the radiation spectrum,angular distribution,and radiation polarization,are thoroughly investigated.The electron-bunch length is evaluated using the measuring system.The radiation-transport line is designed to achieve optimal frequency response and high transmission efficiency.A radiation-transmission efficiency of approximately 80-90%can be achieved with this designed system,along with a pulse energy ranging from 0.17 to 0.25μJ.The expected radiation spectral range covers up to 2 THz with a peak power of 0.5-1.25 MW.This coherent,broadband,and intense THz radiation will serve as a light source for THz spectroscopy and THz time-domain spectroscopy applications at the PCELL in the near future.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金supported in part by National Key Research and Development Program of China(No.2022YFB2803002)National Natural Science Foundation of China(Nos.62235005,62127814,62225405,61975093,61927811,61991443,61925104 and 61974080)Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.