This paper explores the energy-saving advantages of the burst-and-glide swimming and compares it with the normal self-swimming for a thunniform swimmer. The virtual swimmer allows us to perform controlled numerical ex...This paper explores the energy-saving advantages of the burst-and-glide swimming and compares it with the normal self-swimming for a thunniform swimmer. The virtual swimmer allows us to perform controlled numerical experiments by varying the swinging tail number and the duty cycle while keeping the other parameters fixed. 3-D Navier-Stokes equations are used to compute the viscous flow over the swimmer. The user-defined functions and the dynamic mesh technology are used to simulate the burst-and-glide swimming. The results show that with the increase of the swinging tail number or the duty cycle, the swimming velocity, the power and the efficiency all increase, but the velocity-power ratio decreases somewhat. Therefore, choosing smaller swinging tail number and duty cycle is beneficial in reducing the power and increasing the velocity-power ratio, and thus to obtain the same velocity, less power is consumed. And to swim the same distance, the energy can significantly be saved. The power consumption, the efficiency and the velocity-power ratio in the burst-and-glide case are 43.9%, 40.6% and 1.15 times of those in the normal swimming case, respectively. The flow structures clearly show the evolution process around the fish in the burst-and-glide swimming. The findings can be used to reasonably plan the swimming action and to take the advantage of the external flow field energy for the fishlike robot, to be more efficient and energy-saving.展开更多
The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (...The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz.展开更多
Finlets, a series of small individual triangular fins located along the dorsal and ventral midlines of the body, are remarkable specializations of tuna and other scombrid fishes capable of high-speed swimming. In this...Finlets, a series of small individual triangular fins located along the dorsal and ventral midlines of the body, are remarkable specializations of tuna and other scombrid fishes capable of high-speed swimming. In this study, a symmetric model containing nine finlets of tuna is proposed to overcome the limitation of measurement without losing authenticity. Hydrodynamic performance along with three-dimensional flow structures obtained by direct numerical simulation are demonstrated to disclose the underlying hydrodynamics mechanism of finlets. Complex interactions of leading-edge vortices(LEVs), trialing-edge vortices(TEVs), tip vortices(TVs) and root vortices(RVs) are observed from the three-dimensional vortical structures around the finlets. Two more cases consisting of the 3rd to 9th(without the first two) and the 3rd to 7th(without the first two and the last two) finlets are also simulated to examine the effects of the first two and the last two finlets.展开更多
Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results s...Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results show that fishlike forked configurations have better locomotion performance compared with unforked plates. Based on our results, the caudal fin in carangi- form mode has greater thrust, and the lunate tail fin in thtmniform mode has higher efficiency. These findings are qualitatively con- sistent with biological observations of fish swimming. Analysis of wake topology shows that the wake of the forked plate consists of a chain of alternating reverse horseshoe-like vortical structures. These structures induce a backward jet and generate a positive thrust. Moreover, this backward jet has a more favorable direction compared with that behind an unforked plate.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51875101,51375085)
文摘This paper explores the energy-saving advantages of the burst-and-glide swimming and compares it with the normal self-swimming for a thunniform swimmer. The virtual swimmer allows us to perform controlled numerical experiments by varying the swinging tail number and the duty cycle while keeping the other parameters fixed. 3-D Navier-Stokes equations are used to compute the viscous flow over the swimmer. The user-defined functions and the dynamic mesh technology are used to simulate the burst-and-glide swimming. The results show that with the increase of the swinging tail number or the duty cycle, the swimming velocity, the power and the efficiency all increase, but the velocity-power ratio decreases somewhat. Therefore, choosing smaller swinging tail number and duty cycle is beneficial in reducing the power and increasing the velocity-power ratio, and thus to obtain the same velocity, less power is consumed. And to swim the same distance, the energy can significantly be saved. The power consumption, the efficiency and the velocity-power ratio in the burst-and-glide case are 43.9%, 40.6% and 1.15 times of those in the normal swimming case, respectively. The flow structures clearly show the evolution process around the fish in the burst-and-glide swimming. The findings can be used to reasonably plan the swimming action and to take the advantage of the external flow field energy for the fishlike robot, to be more efficient and energy-saving.
文摘The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz.
基金supported by the National Natural Science Foundation of China under grant number 11772172。
文摘Finlets, a series of small individual triangular fins located along the dorsal and ventral midlines of the body, are remarkable specializations of tuna and other scombrid fishes capable of high-speed swimming. In this study, a symmetric model containing nine finlets of tuna is proposed to overcome the limitation of measurement without losing authenticity. Hydrodynamic performance along with three-dimensional flow structures obtained by direct numerical simulation are demonstrated to disclose the underlying hydrodynamics mechanism of finlets. Complex interactions of leading-edge vortices(LEVs), trialing-edge vortices(TEVs), tip vortices(TVs) and root vortices(RVs) are observed from the three-dimensional vortical structures around the finlets. Two more cases consisting of the 3rd to 9th(without the first two) and the 3rd to 7th(without the first two and the last two) finlets are also simulated to examine the effects of the first two and the last two finlets.
基金the National Natural Science Foundation of China (Grant No. 10832010)the Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L05)the 111 Project (Grant No. B07033)
文摘Flapping plates of typical fishlike tail shapes are simulated to investigate their locomotion performance using the multi-block Lattice Boltzmann Method (LBM) and Immersed Boundary (IB) method. Numerical results show that fishlike forked configurations have better locomotion performance compared with unforked plates. Based on our results, the caudal fin in carangi- form mode has greater thrust, and the lunate tail fin in thtmniform mode has higher efficiency. These findings are qualitatively con- sistent with biological observations of fish swimming. Analysis of wake topology shows that the wake of the forked plate consists of a chain of alternating reverse horseshoe-like vortical structures. These structures induce a backward jet and generate a positive thrust. Moreover, this backward jet has a more favorable direction compared with that behind an unforked plate.