This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunde...This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunderstorms associated with negative TLFs in South China.The triggered-flash region(TFR)displays distinct stratiform cloud characteristics,including lower radar reflectivity heights and a predominance of ice crystals and dry snow above the 0℃ layer.In contrast,the thunderstorm convection core region(CCR)tends to have more graupel particles in the mixed-phase layers and exhibits an ice-water content peak approximately 3.4 times that of the TFR.The charge regions involved in discharges in TFRs exhibit a dipolar charge structure,with the-5℃ layer roughly dividing the upper positive and lower negative charge regions.Conversely,the CCRs feature a typical tripolar charge structure.The dominant dipole charge structure in the TFR results in an increase in the negative charge field below the negative charge region with height,providing a necessary condition for successfully triggering negative TLFs.Furthermore,the horizontal extent of TLFs is positively correlated with their duration and charge transfer.Regions where TLF channels with larger charge transfers propagate tend to have greater maximum radar reflectivity but lower average radar reflectivity compared to regions with TLFs with smaller charge transfer.展开更多
Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and t...Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and the different regions, and the characteristics of atmospheric circulation and evolution of influence the sys- tem were analyzed and summarized. The results show that: the lightning and thunderstorm showed great regional differences in the spring of 2013 in Sichuan Province and the thunderstorm activity period was not the same in different areas. Because of the change of atmospheric circulation, the influence system from March to May corresponding to the thunderstorms in Sichuan tended to be volatile, also.展开更多
By dint of natural orthogonal function(EOF) decomposition,correlation and trend analysis methods,the temporal and spatial variation characteristics of thunderstorms in recent 46 years in Henan Province were analyzed.T...By dint of natural orthogonal function(EOF) decomposition,correlation and trend analysis methods,the temporal and spatial variation characteristics of thunderstorms in recent 46 years in Henan Province were analyzed.The result showed that the thunderstorms in Henan Province decreased gradually from the northwest region to the southeast region and the frequency of thunderstorms in the southeast area was relatively high.The thunderstorm intensity area was in its horizontal distribution.Thunderstorms acted relative actively in 60s and tended to dwindle in the end of 80s.While in recent years,the thunderstorms tended to increase and started act frequently.Since March to August in every year,thunderstorms multiplied in each region and decreased after September.The period between 16:00 to 20:00 was the high peak hours of thunderstorms every year.Thunderstorms distribution in Henan Province had pretty good consistence,increasing and decreasing at the same time.The annual variation of thunderstorms showed an unobvious decreasing tendency.展开更多
Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MT- SAT (Multi...Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MT- SAT (Multi-Function Transport Satellite) images, NCEP (National Centers for Environmental Prediction) Reanalysis, and radiosonde. Two of the three storms were sprite-producing and the other was non-sprite- producing. The two sprite-producing storms occurred on 1 2 August and 2~28 July 2007, producing 16 and one sprite, respectively. The non-sprite-producing storm occurred on 29-30 July 2007. The major ob- jective of the study was to try to find possible differences between sprite-producing and non-sprite producing storms using the multiple datasets. The results showed that the convection in the 1-2 August storm was the strongest compared with the other storms, and it produced the largest number of sprites. Precipitation ice, cloud ice and cloud water content in the convective regions in the 1-2 August storm were larger than in the other two storms, but the opposite was true in the weak convective regions. The storm microphysical prop- erties along lines through parent CG (cloud-to-ground lightning) locations showed no special characteristics related to sprites. The flash rate evolution in the 1-2 August storm provided additional confirmation that major sprite activity coincides with a rapid decrease in the negative CG flash rate. However, the evolution curve of the CG flash rate was erratic in the sprite-producing storm on 27-28 July, which was significantly different from that in the 1 2 August storm. The average positive CG peak current in sprite-producing storms was larger than that in the non-sprite-producing one.展开更多
The Tibetan Plateau, with an average altitude above 4000 m, is the highest and largest plateau in the world. The frequency of thunderstorms in this region is extremely high. Many indices are used in operational foreca...The Tibetan Plateau, with an average altitude above 4000 m, is the highest and largest plateau in the world. The frequency of thunderstorms in this region is extremely high. Many indices are used in operational forecasting to assess the stability of the atmosphere and predict the probability of severe thunderstorm development. One of the disadvantages of many of these indices is that they are mainly based on observations from plains. However, considering the Plateau's high elevation, most convective parameters cannot be applied directly, or their application is ineffective. The pre-convective environment on thunderstorm days in this region is investigated based on sounding data obtained throughout a five-year period(2006–10).Thunderstorms occur over the Tibetan Plateau under conditions that differ strikingly from those in plains. On this basis,stability indices, such as the Showalter index(including SI and SICCL), and the K index are improved to better assess the thunderstorm environments on the Plateau. Verification parameters, such as the true-skill statistic(TSS) and Heidke skill score(HSS), are adopted to evaluate the optimal thresholds and relative forecast skill for each modified index. Lastly, the modified indices are verified with a two-year independent dataset(2011–12), showing satisfactory results for the modified indices. For determining whether or not a thunderstorm day is likely to occur, we recommend the modified SICCLindex.展开更多
Thunderstorms of pre-monsoon season (April – May) over Kolkata (22° 32’N, 88° 20’E), India are invariably accompanied with lightning flashes, high wind gusts, torrential rainfall, occasional hail and torn...Thunderstorms of pre-monsoon season (April – May) over Kolkata (22° 32’N, 88° 20’E), India are invariably accompanied with lightning flashes, high wind gusts, torrential rainfall, occasional hail and tornadoes which significantly affect the life and property on the ground and aviation aloft. The societal and economic impact due to such storms made accurate prediction of the weather phenomenon a serious concern for the meteorologists of India. The initiation of such storms requires sufficient moisture in lower troposphere, high surface temperature, conditional instability and a source of lift to initiate the convection. Convective available potential energy (CAPE) is a measure of the energy realized when conditional instability is released. It plays an important role in meso-scale convective systems. Convective inhibition energy (CINE) on the other hand acts as a possible barrier to the release of convection even in the presence of high value of CAPE. The main idea of the present study is to see whether a consistent quantitative range of CAPE and CINE can be identified for the prevalence of such thunderstorms that may aid in operational forecast. A statistical – fuzzy coupled method is implemented for the purpose. The result reveals that a definite range of CINE within 0 – 150 Jkg-1 is reasonably pertinent whereas no such range of CAPE depicts any consistency for the occurrence of severe thunderstorms over Kolkata. The measure of CINE mainly depends upon the altitude of the level of free convection (LFC), surface temperature (T) and surface mixing ratio (q). The box-and-whisker plot of LFC, T and q are drawn to select the most dependable parameter for the consistency of CINE in the prevalence of such thunderstorms. The skills of the parameters are evaluated through skill score analyses. The percentage error during validation with the observation of 2010 is estimated to be 0% for the range of CINE and 3.9% for CAPE.展开更多
The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric ...The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric (E) field, that the thunderstorms can be divided into two categories in the study regions: one showing the normal tripole electrical charge structure (normal-type), and the other showing the special tripole charge structure with a larger-than-usual lower positive charge center (LPCC) at the base of thunderstorm (special-type), where the induced surface E field is controlled by the LPCC when a thunderstorm is overhead. We find that the two types of thunderstorms have different occurrences in different regions, and the percentage of special-type thunderstorms increases with the altitude. On the whole, the flash rate of thunderstorms is quite low, and the mean value is about 1-3 fl/min, while the flash rate of special-type is slightly greater than that of the normal-type thunderstorm. The statistical results of cloud-to-ground flash (CG) numbers indicate that the ratio of +CG flash increases with the altitude, with the value about 14.7 percent through 25.4 percent.展开更多
The influences of large areas of semi-unbounded cold water surface on the evolution, propagation and precipitation production of thunderstorms are simulated by using a fully elastic three-dimensional numerical hailsto...The influences of large areas of semi-unbounded cold water surface on the evolution, propagation and precipitation production of thunderstorms are simulated by using a fully elastic three-dimensional numerical hailstorm model. Real sounding profiles for temperature, humidity and wind are employed. The model has successfully simulated the significant modification of the propagation path of thunderstorms near the cold water area. The path change can be either' along-bank' or' toward-bank', depending on the position of the storm system relative to convergence zone of the water-land circulation. The simulations also show that thunderstorms developing or propagating within the convergence zone of local circulation will be intensified and produce much heavier hail, whereas those over cold water surface or the air that has been cooled by the water will be strongly inhibited.The influence of the cold water surface on thunderstorm characters is largely dependent upon the direction and intensity of the low-level wind.展开更多
Based on daily data of thunderstorms during 1967 -2012 from the national meteorological station in Doumen District of Zhuhai City, the climatic characteristics of thunderstorms in Doumen District were analyzed using c...Based on daily data of thunderstorms during 1967 -2012 from the national meteorological station in Doumen District of Zhuhai City, the climatic characteristics of thunderstorms in Doumen District were analyzed using climate tendency rate, sliding t test, trend analysis and experience frequency, The results showed that annual thunderstorm days in Doumen District showed a decreasing trend in recent 46 years; thunderstorms appeared in the whole year; monthly thunderstorm days had two peaks; thunderstorms occurred frequently in summer, especially in August, while thunderstorm days were the least in winter; annual thunderstorm days in Doumen District declined sharply in 1984; most thunderstorms began from middle February to late March and ended from late September to middle November; thunderstorms in Doumen District lasted for a long term, and there was a great change in thunderstorm duration in different years.展开更多
[Objective] The study aimed to discuss the distribution characteristics of thunderstorms in Xuzhou City. [Method] Based on thunder- storm observation data during 1978 -2008 provided by Jiuli Mountain station, beginnin...[Objective] The study aimed to discuss the distribution characteristics of thunderstorms in Xuzhou City. [Method] Based on thunder- storm observation data during 1978 -2008 provided by Jiuli Mountain station, beginning and ending months, days, duration, frequency, hours and direction of thunderstorms in Xuzhou were analyzed. [ Result] From 1978 to 2008, there were obvious annual variations in thunderstorm days in Xuzhou City. Thunderstorm days were more in July and August compared with other months, while there were no thunderstorms in January and De- comber. Thunderstorms began earliest in February and ended latest in November, with a long span. The longest duration of thunderstorms reached 259 d, accounting for 71% of total days of a year. The maximum frequency of thunderstorms (64) appeared in 1995, and the maximum hours of thunderstorms (4 048 h) appeared in 2003. Thunderstorms occurred most frequently in the southwest, followed by SE and NW. [ Conclusion] The research could provide scientific references for the prevention and control of lightning strokes in Xuzhou in future.展开更多
Based on the 1951-2007 thunderstorms in Jiangsu,a study is conducted for their climate trends,periodicity,spatiotemporal patterns,and the distributions of the first and last days of the thunderstorms at different guar...Based on the 1951-2007 thunderstorms in Jiangsu,a study is conducted for their climate trends,periodicity,spatiotemporal patterns,and the distributions of the first and last days of the thunderstorms at different guarantee rates (GRs) using climate tendency rate,wavelet analysis,and GR for diagnosis.Results suggest that the inter-annual number of thunderstorm days (TSDs) exhibits a decreasing trend in this province.The trend is displayed mainly in the decreasing TSD number in summer and autumn except in spring,when the variation is not significant in the study period.In this province,the TSD number declines by ~2 days per 10 years.On an inter-annual basis,the pronounced positive departures of the number take place chiefly in the early 1960s,the late 1960s to the early-mid-1970s,the late 1980s,and the late 1990s compared with the negative anomalies dominant in the late 1970s to the mid-1980s,the mid-to-late-1990s,and the late 1990s to 2007.There are vast differences in the initial and ending days at diverse GRs in different areas of the province.At 50% GR,the earliest (last) days occur from mid-March to early April (early to late September) while at 80% GR,the initial (last) days are from late March to early May (early to late October).For the distribution of periods,the periods >8-10 years are relatively stable for the entire province.Based on 1951-2007 period analysis,the region north (south) of the Huaihe River experiences TSDs less (more) than normal days in recent years.展开更多
The observation, in the past, that a thunderstorm perturbed the transmissions of an old vacuum tubes radio with noise discharges in correspondence with lightnings, suggested the possibility of radio-acoustic study of ...The observation, in the past, that a thunderstorm perturbed the transmissions of an old vacuum tubes radio with noise discharges in correspondence with lightnings, suggested the possibility of radio-acoustic study of thunderstorms. The noise discharges appeared to convey not only information about lightnings, but also about any other thunderstorm electromagnetic phenomena generating noise discharges. The low-cost instrumentation involved in the radio-acoustic study, comprised a radio Telefunken mod. T33B, a 15 m long indoor wire antenna, a mobile telephone Samsung Galaxy S20 FE 5G provided with the recorder App Enregistreur vocal, a computer HP Pavillion dv5-1254eg and the s/w audio analyser Audacity. A first thunderstorm on 20 June 2023 and a second thunderstorm on 22 June 2023, both above Munich, were radio-acoustic studied. The second thunderstorm was more active than the first and released much more energy.展开更多
基金funded by the Natural Science Foundation of China(Grant No.U2342215)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(Grant No.SCSF202302)。
文摘This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunderstorms associated with negative TLFs in South China.The triggered-flash region(TFR)displays distinct stratiform cloud characteristics,including lower radar reflectivity heights and a predominance of ice crystals and dry snow above the 0℃ layer.In contrast,the thunderstorm convection core region(CCR)tends to have more graupel particles in the mixed-phase layers and exhibits an ice-water content peak approximately 3.4 times that of the TFR.The charge regions involved in discharges in TFRs exhibit a dipolar charge structure,with the-5℃ layer roughly dividing the upper positive and lower negative charge regions.Conversely,the CCRs feature a typical tripolar charge structure.The dominant dipole charge structure in the TFR results in an increase in the negative charge field below the negative charge region with height,providing a necessary condition for successfully triggering negative TLFs.Furthermore,the horizontal extent of TLFs is positively correlated with their duration and charge transfer.Regions where TLF channels with larger charge transfers propagate tend to have greater maximum radar reflectivity but lower average radar reflectivity compared to regions with TLFs with smaller charge transfer.
文摘Based on the lightning monitoring data, automatic and routine weather station observation data in spring (March-May) of 2013 of Sichuan Province, the corresponding relationship between the spatial distribution and the different regions, and the characteristics of atmospheric circulation and evolution of influence the sys- tem were analyzed and summarized. The results show that: the lightning and thunderstorm showed great regional differences in the spring of 2013 in Sichuan Province and the thunderstorm activity period was not the same in different areas. Because of the change of atmospheric circulation, the influence system from March to May corresponding to the thunderstorms in Sichuan tended to be volatile, also.
基金Supported by Scientific Research Special Fund for Public Welfare Industry (GYHY 200806014)Nanjing University of Information Science & Technology Program (E30JG0730)
文摘By dint of natural orthogonal function(EOF) decomposition,correlation and trend analysis methods,the temporal and spatial variation characteristics of thunderstorms in recent 46 years in Henan Province were analyzed.The result showed that the thunderstorms in Henan Province decreased gradually from the northwest region to the southeast region and the frequency of thunderstorms in the southeast area was relatively high.The thunderstorm intensity area was in its horizontal distribution.Thunderstorms acted relative actively in 60s and tended to dwindle in the end of 80s.While in recent years,the thunderstorms tended to increase and started act frequently.Since March to August in every year,thunderstorms multiplied in each region and decreased after September.The period between 16:00 to 20:00 was the high peak hours of thunderstorms every year.Thunderstorms distribution in Henan Province had pretty good consistence,increasing and decreasing at the same time.The annual variation of thunderstorms showed an unobvious decreasing tendency.
基金supported jointly by Strategic Priority Research Program on Space Science(Grant No.XDA04072400)Project Supported by the Specialized Research Fund for State Key Laboratories,Youth Innovation Promotion Association,CAS,National Basic Research Program of China(973 Program,Grant No.2010CB428602)+2 种基金the Special Fund for Public Welfare Industry(GYHY201006005-07)National Natural Science Foundation of China(Grant Nos.41374153,40930949,40804028)Beijing Natural Science Foundation
文摘Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MT- SAT (Multi-Function Transport Satellite) images, NCEP (National Centers for Environmental Prediction) Reanalysis, and radiosonde. Two of the three storms were sprite-producing and the other was non-sprite- producing. The two sprite-producing storms occurred on 1 2 August and 2~28 July 2007, producing 16 and one sprite, respectively. The non-sprite-producing storm occurred on 29-30 July 2007. The major ob- jective of the study was to try to find possible differences between sprite-producing and non-sprite producing storms using the multiple datasets. The results showed that the convection in the 1-2 August storm was the strongest compared with the other storms, and it produced the largest number of sprites. Precipitation ice, cloud ice and cloud water content in the convective regions in the 1-2 August storm were larger than in the other two storms, but the opposite was true in the weak convective regions. The storm microphysical prop- erties along lines through parent CG (cloud-to-ground lightning) locations showed no special characteristics related to sprites. The flash rate evolution in the 1-2 August storm provided additional confirmation that major sprite activity coincides with a rapid decrease in the negative CG flash rate. However, the evolution curve of the CG flash rate was erratic in the sprite-producing storm on 27-28 July, which was significantly different from that in the 1 2 August storm. The average positive CG peak current in sprite-producing storms was larger than that in the non-sprite-producing one.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275128, 41375063 and 41206163)the Chengdu Institute of Plateau Meteorology Foundation
文摘The Tibetan Plateau, with an average altitude above 4000 m, is the highest and largest plateau in the world. The frequency of thunderstorms in this region is extremely high. Many indices are used in operational forecasting to assess the stability of the atmosphere and predict the probability of severe thunderstorm development. One of the disadvantages of many of these indices is that they are mainly based on observations from plains. However, considering the Plateau's high elevation, most convective parameters cannot be applied directly, or their application is ineffective. The pre-convective environment on thunderstorm days in this region is investigated based on sounding data obtained throughout a five-year period(2006–10).Thunderstorms occur over the Tibetan Plateau under conditions that differ strikingly from those in plains. On this basis,stability indices, such as the Showalter index(including SI and SICCL), and the K index are improved to better assess the thunderstorm environments on the Plateau. Verification parameters, such as the true-skill statistic(TSS) and Heidke skill score(HSS), are adopted to evaluate the optimal thresholds and relative forecast skill for each modified index. Lastly, the modified indices are verified with a two-year independent dataset(2011–12), showing satisfactory results for the modified indices. For determining whether or not a thunderstorm day is likely to occur, we recommend the modified SICCLindex.
文摘Thunderstorms of pre-monsoon season (April – May) over Kolkata (22° 32’N, 88° 20’E), India are invariably accompanied with lightning flashes, high wind gusts, torrential rainfall, occasional hail and tornadoes which significantly affect the life and property on the ground and aviation aloft. The societal and economic impact due to such storms made accurate prediction of the weather phenomenon a serious concern for the meteorologists of India. The initiation of such storms requires sufficient moisture in lower troposphere, high surface temperature, conditional instability and a source of lift to initiate the convection. Convective available potential energy (CAPE) is a measure of the energy realized when conditional instability is released. It plays an important role in meso-scale convective systems. Convective inhibition energy (CINE) on the other hand acts as a possible barrier to the release of convection even in the presence of high value of CAPE. The main idea of the present study is to see whether a consistent quantitative range of CAPE and CINE can be identified for the prevalence of such thunderstorms that may aid in operational forecast. A statistical – fuzzy coupled method is implemented for the purpose. The result reveals that a definite range of CINE within 0 – 150 Jkg-1 is reasonably pertinent whereas no such range of CAPE depicts any consistency for the occurrence of severe thunderstorms over Kolkata. The measure of CINE mainly depends upon the altitude of the level of free convection (LFC), surface temperature (T) and surface mixing ratio (q). The box-and-whisker plot of LFC, T and q are drawn to select the most dependable parameter for the consistency of CINE in the prevalence of such thunderstorms. The skills of the parameters are evaluated through skill score analyses. The percentage error during validation with the observation of 2010 is estimated to be 0% for the range of CINE and 3.9% for CAPE.
基金supported by National Natural Science Foundation of China (Grant No. 40905001, 40775004)the Main Direction Program of the Knowledge Innovation of Chinese Academy of Sciences (Grant No.KZCX2-YW-206)
文摘The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric (E) field, that the thunderstorms can be divided into two categories in the study regions: one showing the normal tripole electrical charge structure (normal-type), and the other showing the special tripole charge structure with a larger-than-usual lower positive charge center (LPCC) at the base of thunderstorm (special-type), where the induced surface E field is controlled by the LPCC when a thunderstorm is overhead. We find that the two types of thunderstorms have different occurrences in different regions, and the percentage of special-type thunderstorms increases with the altitude. On the whole, the flash rate of thunderstorms is quite low, and the mean value is about 1-3 fl/min, while the flash rate of special-type is slightly greater than that of the normal-type thunderstorm. The statistical results of cloud-to-ground flash (CG) numbers indicate that the ratio of +CG flash increases with the altitude, with the value about 14.7 percent through 25.4 percent.
基金This work is supported by LASG, IAP, Chinese Academy of Sciences.
文摘The influences of large areas of semi-unbounded cold water surface on the evolution, propagation and precipitation production of thunderstorms are simulated by using a fully elastic three-dimensional numerical hailstorm model. Real sounding profiles for temperature, humidity and wind are employed. The model has successfully simulated the significant modification of the propagation path of thunderstorms near the cold water area. The path change can be either' along-bank' or' toward-bank', depending on the position of the storm system relative to convergence zone of the water-land circulation. The simulations also show that thunderstorms developing or propagating within the convergence zone of local circulation will be intensified and produce much heavier hail, whereas those over cold water surface or the air that has been cooled by the water will be strongly inhibited.The influence of the cold water surface on thunderstorm characters is largely dependent upon the direction and intensity of the low-level wind.
文摘Based on daily data of thunderstorms during 1967 -2012 from the national meteorological station in Doumen District of Zhuhai City, the climatic characteristics of thunderstorms in Doumen District were analyzed using climate tendency rate, sliding t test, trend analysis and experience frequency, The results showed that annual thunderstorm days in Doumen District showed a decreasing trend in recent 46 years; thunderstorms appeared in the whole year; monthly thunderstorm days had two peaks; thunderstorms occurred frequently in summer, especially in August, while thunderstorm days were the least in winter; annual thunderstorm days in Doumen District declined sharply in 1984; most thunderstorms began from middle February to late March and ended from late September to middle November; thunderstorms in Doumen District lasted for a long term, and there was a great change in thunderstorm duration in different years.
文摘[Objective] The study aimed to discuss the distribution characteristics of thunderstorms in Xuzhou City. [Method] Based on thunder- storm observation data during 1978 -2008 provided by Jiuli Mountain station, beginning and ending months, days, duration, frequency, hours and direction of thunderstorms in Xuzhou were analyzed. [ Result] From 1978 to 2008, there were obvious annual variations in thunderstorm days in Xuzhou City. Thunderstorm days were more in July and August compared with other months, while there were no thunderstorms in January and De- comber. Thunderstorms began earliest in February and ended latest in November, with a long span. The longest duration of thunderstorms reached 259 d, accounting for 71% of total days of a year. The maximum frequency of thunderstorms (64) appeared in 1995, and the maximum hours of thunderstorms (4 048 h) appeared in 2003. Thunderstorms occurred most frequently in the southwest, followed by SE and NW. [ Conclusion] The research could provide scientific references for the prevention and control of lightning strokes in Xuzhou in future.
基金Social Development Program of Jiangsu Science and Technology (BS2007088)
文摘Based on the 1951-2007 thunderstorms in Jiangsu,a study is conducted for their climate trends,periodicity,spatiotemporal patterns,and the distributions of the first and last days of the thunderstorms at different guarantee rates (GRs) using climate tendency rate,wavelet analysis,and GR for diagnosis.Results suggest that the inter-annual number of thunderstorm days (TSDs) exhibits a decreasing trend in this province.The trend is displayed mainly in the decreasing TSD number in summer and autumn except in spring,when the variation is not significant in the study period.In this province,the TSD number declines by ~2 days per 10 years.On an inter-annual basis,the pronounced positive departures of the number take place chiefly in the early 1960s,the late 1960s to the early-mid-1970s,the late 1980s,and the late 1990s compared with the negative anomalies dominant in the late 1970s to the mid-1980s,the mid-to-late-1990s,and the late 1990s to 2007.There are vast differences in the initial and ending days at diverse GRs in different areas of the province.At 50% GR,the earliest (last) days occur from mid-March to early April (early to late September) while at 80% GR,the initial (last) days are from late March to early May (early to late October).For the distribution of periods,the periods >8-10 years are relatively stable for the entire province.Based on 1951-2007 period analysis,the region north (south) of the Huaihe River experiences TSDs less (more) than normal days in recent years.
文摘The observation, in the past, that a thunderstorm perturbed the transmissions of an old vacuum tubes radio with noise discharges in correspondence with lightnings, suggested the possibility of radio-acoustic study of thunderstorms. The noise discharges appeared to convey not only information about lightnings, but also about any other thunderstorm electromagnetic phenomena generating noise discharges. The low-cost instrumentation involved in the radio-acoustic study, comprised a radio Telefunken mod. T33B, a 15 m long indoor wire antenna, a mobile telephone Samsung Galaxy S20 FE 5G provided with the recorder App Enregistreur vocal, a computer HP Pavillion dv5-1254eg and the s/w audio analyser Audacity. A first thunderstorm on 20 June 2023 and a second thunderstorm on 22 June 2023, both above Munich, were radio-acoustic studied. The second thunderstorm was more active than the first and released much more energy.