With the development of the aircraft gas turbine engine, a control system should be able to achieve effective thrust control to gain better operability. The main contribution of this paper is to develop a novel direct...With the development of the aircraft gas turbine engine, a control system should be able to achieve effective thrust control to gain better operability. The main contribution of this paper is to develop a novel direct thrust control approach based on an improved model predictive control method through a strategy that reduces the dimension of control sequence. It can not only achieve normal direct thrust control tasks but also maximize the thrust level within the safe operation boundaries. Only the action of switching the objective functions is required to achieve the switch of these two thrust control modes while there is no modification to the control structure. Besides,a shorter control sequence is defined for multivariable control by updating only one control variable at every simulation time instant. Therefore, the time requirement for the solving process of the optimal control sequence is reduced. The proposed controller is implemented to a twin-spool engine.Simulations are conducted in the wide flight envelope, and results show that the average timeconsumption can be reduced up to 65% in comparison with the standard model predictive control,and the thrust can be increased significantly when maximum thrust mode is implemented by using engine limit margins.展开更多
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust...In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.展开更多
基金supported by China Scholarship Council(No.201906830081)。
文摘With the development of the aircraft gas turbine engine, a control system should be able to achieve effective thrust control to gain better operability. The main contribution of this paper is to develop a novel direct thrust control approach based on an improved model predictive control method through a strategy that reduces the dimension of control sequence. It can not only achieve normal direct thrust control tasks but also maximize the thrust level within the safe operation boundaries. Only the action of switching the objective functions is required to achieve the switch of these two thrust control modes while there is no modification to the control structure. Besides,a shorter control sequence is defined for multivariable control by updating only one control variable at every simulation time instant. Therefore, the time requirement for the solving process of the optimal control sequence is reduced. The proposed controller is implemented to a twin-spool engine.Simulations are conducted in the wide flight envelope, and results show that the average timeconsumption can be reduced up to 65% in comparison with the standard model predictive control,and the thrust can be increased significantly when maximum thrust mode is implemented by using engine limit margins.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009087)
文摘In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.