期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Positive gate-bias temperature instability of ZnO thin-film transistor 被引量:2
1
作者 刘玉荣 苏晶 +1 位作者 黎沛涛 姚若河 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期602-607,共6页
The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state cu... The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state current decrease, and the threshold voltage shifts toward the positive direction. The stress amplitude and stress temperature are considered as important factors in threshold-voltage instability, and the time dependences of threshold voltage shift under various bias temperature stress conditions could be described by a stretched-exponential equation. Based on the analysis of hysteresis behaviors in current- voltage and capacitance-voltage characteristics before and after the gate-bias stress, it can be clarified that the threshold- voltage shift is predominantly attributed to the trapping of negative charge carriers in the defect states located at the gate- dielectric/channel interface. 展开更多
关键词 thin-film transistors (TFTs) zinc oxide gate-bias instability threshold-voltage shift
原文传递
Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology 被引量:1
2
作者 Meihua Liu Zhangwei Huang +3 位作者 Kuan-Chang Chang Xinnan Lin Lei Li Yufeng Jin 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期419-423,共5页
The impact of supercritical CO2/H2O technology on the threshold-voltage instability of AlGaN/GaN metal-insulator semiconductor high-electron-mobility transistors(MIS-HEMTs) is investigated. The MIS-HEMTs were placed i... The impact of supercritical CO2/H2O technology on the threshold-voltage instability of AlGaN/GaN metal-insulator semiconductor high-electron-mobility transistors(MIS-HEMTs) is investigated. The MIS-HEMTs were placed in a supercritical fluid system chamber at 150℃ for 3 h. The chamber was injected with CO2 and H2O at pressure of 3000 psi(1 psi ≈ 6.895 kPa). Supercritical H2O fluid has the characteristics of liquid H2O and gaseous H2O at the same time, that is, high penetration and high solubility. In addition, OH-produced by ionization of H2O can fill the nitrogen vacancy near the Si3N4/GaN/AlGaN interface caused by high temperature process. After supercritical CO2/H2O treatment, the threshold voltage shift is reduced from 1 V to 0.3 V. The result shows that the threshold voltage shift of MIS-HEMTs could be suppressed by supercritical CO2/H2O treatment. 展开更多
关键词 MIS-HEMTs threshold-voltage instability gate stress temperature influence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部