期刊文献+
共找到42,595篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model
1
作者 ZHANG Ping LU Mingtai +1 位作者 LU Tiantian YUE Yinghu 《材料导报》 北大核心 2026年第2期20-28,共9页
In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results i... In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors. 展开更多
关键词 ZnO varistors Voronoi network DC aging finite element method(FEM) current distribution double Schottky barrier theory
在线阅读 下载PDF
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method 被引量:1
2
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) Three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
An Inner-Element Edge-Based Smoothed Finite Element Method
3
作者 Zhigang Pei Wei Xie +1 位作者 Tao Suo Zhimin Xu 《Acta Mechanica Solida Sinica》 2025年第5期815-824,共10页
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE... A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified. 展开更多
关键词 Smoothed finite element method(S-FEM) Edge-based smoothed finite element method(ES-FEM) User-defined element(UEL) Stress analysis Displacement analysis
原文传递
Computational method for analytical solution with finite elements(CMAS-FE):Deriving approximate analytical solution for an isotropic homogeneous elastic medium with linear finite element method
4
作者 Jiajia Yue Zifeng Yuan 《Theoretical & Applied Mechanics Letters》 2025年第6期540-550,共11页
This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv... This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate. 展开更多
关键词 CMAS-FE finite element method Linear elastic problem Analytical solution
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
5
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling finite element method Residual neural networks
在线阅读 下载PDF
Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures
6
作者 Xiaolin Li Xinyue Li +2 位作者 Liming Zhou Hangran Yang Xiaoqing Yuan 《Computers, Materials & Continua》 2025年第3期3821-3841,共21页
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i... Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures. 展开更多
关键词 Multiscale finite element method heterogeneous materials transient responses MAGNETO-ELECTRO-ELASTIC multiscale basis function
在线阅读 下载PDF
Optimal Error Estimates of Multiphysics Finite Element Method for a Nonlinear Poroelasticity Model with Nonlinear Stress-Strain Relation
7
作者 GE Zhi-hao LI Hai-run LI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2025年第3期271-294,共24页
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge... In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results. 展开更多
关键词 Nonlinear poroelasticity model Multiphysics finite element method Back-ward Euler method
在线阅读 下载PDF
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
8
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
9
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
在线阅读 下载PDF
Revealling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
10
作者 Zijia Liao Hesamoddin Rabiee +5 位作者 Lei Ge Xiaogang Li Zhaozhong Yang Qi Xue Chao Shen Hao Wang 《Journal of Materials Science & Technology》 2025年第8期72-81,共10页
Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres wi... Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant. 展开更多
关键词 Porous proppant finite and discrete element method(FDEM) CRACK Compressive strength
原文传递
Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method
11
作者 Yunjun Lee Sanggyu Cheon Woo Chul Chung 《Computer Modeling in Engineering & Sciences》 2025年第12期3381-3403,共23页
The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower.The rotating packed bed(RPB)has emerged as a promising alterna... The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower.The rotating packed bed(RPB)has emerged as a promising alternative due to its small footprint and high mass transfer performance.However,despite its advantages,the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied,and no international design standards currently exist for RPBs.To address this gap,this study performed a comprehensive finite element analysis(FEA)using ANSYS to investigate the structural and dynamic characteristics of an RPB.A three-dimensional model was developed to evaluate the effects of material selection(316 stainless steel,aluminum alloy,titanium alloy),bearing stiffness,and unbalanced mass on deformation,stress,and natural frequencies.In the structural analysis,316 stainless steel exhibited the highest von Mises stress and deformation.However,it was confirmed that all three materials did not exceed their yield strengths at the maximum rotating speed.Modal analysis and Campbell diagrams showed no resonance risk within the rated speed range,and increased bearing stiffness led to higher natural frequencies and improved stability.The findings provide quantitative design guidance for material selection,bearing stiffness optimization,and vibration control in high-rotational-speed RPB systems.This study contributes to establishing a foundational framework for the mechanical reliability and standardization of marine carbon capture units. 展开更多
关键词 Rotating packed bed ROTORDYNAMICS finite element method structural analysis modal analysis VIBRATION bearing stiffness unbalance mass response analysis
在线阅读 下载PDF
A MIXED FINITE ELEMENT AND UPWIND MIXED FINITE ELEMENT MULTI-STEP METHOD FOR THE THREE-DIMENSIONAL POSITIVE SEMI-DEFINITE DARCY-FORCHHEIMER MISCIBLE DISPLACEMENT PROBLEM
12
作者 Yirang YUAN Changfeng LI +1 位作者 Huailing SONG Tongjun SUN 《Acta Mathematica Scientia》 2025年第2期715-736,共22页
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e... In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application. 展开更多
关键词 Darcy-Forchheimer fow three-dimensional positive semi-definite problem upwind mixed finite element multi-step method conservation of mass convergence analysis
在线阅读 下载PDF
A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method
13
作者 Lei-Yu Zhang Yi-Xuan Li +1 位作者 Ming-Yue Han Quan-Zhi Zhang 《Chinese Physics B》 2025年第4期154-160,共7页
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T... Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics. 展开更多
关键词 ion cyclotron range of frequency(ICRF)antennas finite element method perfect matching layer
原文传递
A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries 被引量:1
14
作者 Cheng HUAN Dai ZHOU Yan BAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第1期33-45,共13页
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) ... A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory. 展开更多
关键词 Semi-implicit three-step method Streamline upwind/Petrov-Galerkin (SUPG) finite element method (FEM) Unsteady incompressible flows Lid driven cavity problem
原文传递
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:8
15
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 ROADWAY DC focus advanced detection finite element method
在线阅读 下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
16
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
在线阅读 下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
17
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
18
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
在线阅读 下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
19
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
在线阅读 下载PDF
Combined method for fast 3-D finite element modeling of nondestructive testing signal 被引量:1
20
作者 林鹤云 《Journal of Southeast University(English Edition)》 EI CAS 2004年第2期195-199,共5页
A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, differen... A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, difference field technique and iterative solution technique. Utilizing the zoom-in technique, the computational zone focuses on a relatively small domain around the defect. Employing the difference field technique, the axisymmetrical field solution corresponding to the case with no defect can be used to simplify the mesh generation and obtain the modeling results quickly. Using the iterative solution technique, the matrix equation system in the 3-D finite element modeling of nondestructive probe signals can easily be solved. The sample calculation shows that the presented method is highly effective and can consequently save significant computer resources. 展开更多
关键词 Electromagnetic fields finite element method Iterative methods Probes
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部