期刊文献+
共找到20,444篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and simulation of non-isothermal three-phase flow for accurate prediction in underbalanced drilling
1
作者 FALAVAND-JOZAEI A HAJIDAVALLOO E +1 位作者 SHEKARI Y GHOBADPOURI S 《Petroleum Exploration and Development》 CSCD 2022年第2期406-414,共9页
The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition.... The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate. 展开更多
关键词 under-balanced drilling bottom-hole pressure fluid temperature CUTTINGS three-phase flow model temperature profile wellbore heat transfer
在线阅读 下载PDF
Simplified Model Predictive Current Control for Dual Three-phase PMSM with Low Computation Burden and Switching Frequency 被引量:1
2
作者 Huawei Zhou Xiaolong Xiang +1 位作者 Yibo Li Tao Tao 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第4期447-454,共8页
Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified M... Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy. 展开更多
关键词 Computation time Current increment vector Dual three-phase permanent magnet synchronous motor(DTPPMSM) model predictive current control(MPCC) Switching frequency
在线阅读 下载PDF
A novel deceleration traffic flow model with oscillatory congested states
3
作者 Junxia Wang Tiandong Xu 《Chinese Physics B》 2025年第10期598-607,共10页
A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-tostart rule.The novel model considers human overreaction and mechanical restrictions as limited decelerati... A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-tostart rule.The novel model considers human overreaction and mechanical restrictions as limited deceleration capacity,effectively avoiding the unrealistic deceleration behavior found in most existing traffic flow models.In order to consider that the acceleration of a stationary vehicle is slower than that of a moving vehicle due to reasons such as driver inattention,the slow-to-start rule is introduced.In actual traffic,the driver will take different deceleration measures according to local traffic conditions,divided into ordinary and emergency deceleration.The deceleration setting in the deceleration model with only ordinary deceleration is modified.Computer simulations show that the novel model can achieve smooth,comfortable acceleration and deceleration behavior.Introducing the slow-to-start rule can realize the first-order transition from free flow to synchronized flow.The oscillatory congested states enable a first-order transition from synchronized flow to wide moving jam.Under periodic boundary conditions,the novel model can reproduce three traffic flow phases(free flow,synchronized flow,and wide moving jam)and two first-order transitions between three phases.In addition,the novel model can reproduce empirical results such as linear synchronized flow and headway distribution of free flow below 1 s.Under open boundary conditions,different congested patterns caused by on-ramps are analyzed.Compared with the classic deceleration model,this model can better reproduce the phenomenon and characteristics of actual traffic flow and provide more accurate decision support for daily traffic management of expressways. 展开更多
关键词 oscillatory congested states three-phase traffic flow limited deceleration capacity slow-to-start rule cellular automaton
原文传递
Constitutive modeling to predict flow stress of AerMet 100 ultra-high strength steel in hot working process
4
作者 Ri Sung Kim Kyong Ho Sim Hye Yong Ri 《Journal of Iron and Steel Research International》 2025年第9期2834-2846,共13页
The phenomenological and physically based models,using the true stress–true strain curve data obtained under various hot working conditions of 850–1200°C and 0.001–10 s−1,were developed and improved for AerMet... The phenomenological and physically based models,using the true stress–true strain curve data obtained under various hot working conditions of 850–1200°C and 0.001–10 s−1,were developed and improved for AerMet 100 ultra-high strength steel.The predictability of the developed constitutive models was verified and compared.The determination coefficient and average absolute relative error were 0.9988 and 3.72%for the improved version of the modified Zerilli–Armstrong model,0.9985 and 3.96%for the improved version of the modified Johnson–Cook model,0.9947 and 4.59%for the strain-compensated Arrhenius-type model and 0.9913 and 5.43%for the improved Khan–Huang–Liang model,respectively.The results showed that the improved versions of the modified Zerilli–Armstrong model have the best predictability among the studied constitutive models.Comparing the predictability before and after the improvement,the average absolute relative error was increased by 65.14%for the modified Zerilli–Armstrong model and 58.45%for the modified Johnson–Cook model.This indicates that the phenomenological improvement of physically based constitutive models allows us to develop effectively constitutive equations with high prediction accuracy. 展开更多
关键词 AerMet 100 steel High-temperature flow stress Arrhenius-type model Johnson-Cook model Khan-Huang-Liang model Zerilli-Armstrong model
原文传递
Synergistic effect of modified ethylene-vinyl acetate and asphaltenes on improving the flow properties of model oil
5
作者 Yang Liu Zheng-Nan Sun +3 位作者 Guo-Lin Jing Yi-Hai Yang Hui Jiang Xiao-Yan Liu 《Petroleum Science》 2025年第2期925-934,共10页
The effect of alcoholic polyethylene-vinyl acetate(EVA)product ethylene-vinyl alcohol copolymer(EVAL)on the low-temperature flow properties of model oil containing asphaltene(ASP)was investigated.The change of wax cry... The effect of alcoholic polyethylene-vinyl acetate(EVA)product ethylene-vinyl alcohol copolymer(EVAL)on the low-temperature flow properties of model oil containing asphaltene(ASP)was investigated.The change of wax crystal microscopic morphology of model oil before and after modification were examined,and the influence of asphaltene mass fraction on the rheological improvement effect of EVAL was analyzed.The composite system of EVAL and asphaltene significantly reduced the pour point,gel point,apparent viscosity,storage modulus and loss modulus of waxy oil at low temperatures.When the EVAL concentration is 400 ppm and the asphaltene mass fraction is 0.5 wt%,the synergistic effect of the two is optimal,which can reduce the pour point by 17℃and the modulus value by more than 98%.The introduction of EVAL strengthens the interaction between asphaltenes and wax crystals,forming EVALASP aggregates,which promote the adsorption of wax crystals on asphaltenes to form composite particles,and the polar groups prevent the aggregation of wax crystals and reduce the size of wax crystals,thus greatly improving the fluidity of waxy oils. 展开更多
关键词 ASPHALTENE EVAL model oil WAX flow improver
原文传递
Changes in hemodynamics of pulmonary artery using Flowire in a canine model of acute pulmonary thromboembolism
6
作者 Tomohiko Yoshida Katsuhiro Matsuura +1 位作者 Akiko Uemura Ryou Tanaka 《Animal Models and Experimental Medicine》 2025年第10期1888-1895,共8页
Background:Pulmonary hypertension(PH)is a life-threatening condition that can be triggered by pulmonary thromboembolism(PTE),which causes abrupt increases in pulmonary artery pressure and resistance.Although Doppler e... Background:Pulmonary hypertension(PH)is a life-threatening condition that can be triggered by pulmonary thromboembolism(PTE),which causes abrupt increases in pulmonary artery pressure and resistance.Although Doppler echocardiography is a useful screening tool,its ability to accurately reflect rapid hemodynamic changes during acute PTE remains limited.The Flowire catheter allows for real-time assessment of intravascular flow and may offer better insight into these changes.Aims:The aims were to investigate changes in pulmonary artery hemodynamics measured using a Flowire catheter and to validate the accuracy of Doppler echocardiography in assessing these changes in dogs with acute pulmonary thromboembolism(PTE).Methods:Hemodynamic and echocardiographic data were obtained from 10 anesthetized female beagles using a Flowire catheter and echocardiography at three preload conditions:baseline,bolus loading,and an acute pulmonary hypertension state induced by a 300-μm dextran microsphere injection.Results:With increases in pulmonary artery pressure and pulmonary vascular resistance,the proximal and distal pulmonary artery flow peak measured using the Flowire catheter significantly decreased during the acute pulmonary hypertension period.Echocardiography did not accurately capture these hemodynamic changes and tended to overestimate pulmonary artery flow peak in the distal pulmonary artery.Conclusion:Doppler echocardiography has limitations in accurately reflecting complex hemodynamic changes during acute PTE.In contrast,Flowire catheterization provides additional and precise local hemodynamic information. 展开更多
关键词 canine model pulmonary artery flow peak pulmonary hypertension
暂未订购
Understanding characteristic electrochemical impedance spectral data of redox flow batteries with multiphysics modeling
7
作者 Ayoob Alhammadi Abdulmonem Fetyan +2 位作者 Rahmat Agung Susantyoko Ibrahim Mustafa Musbaudeen O.Bamgbopa 《Journal of Energy Chemistry》 2025年第3期329-339,共11页
Electrochemical impedance spectroscopy(EIS)is a robust characterization method to probe prevalent(electro)chemical processes in an electrochemical system.Despite its extensive utilization in fuel cell research,the app... Electrochemical impedance spectroscopy(EIS)is a robust characterization method to probe prevalent(electro)chemical processes in an electrochemical system.Despite its extensive utilization in fuel cell research,the application of EIS in redox flow battery systems particularly for simplified two-electrode full-cell configurations is more limited.Herein we attempt to strengthen the understa nding of cha racteristic EIS data of vanadium redox flow batteries by a combination of equivalent circuit modeling with a validated Multiphysics model analyzed under hydrodynamic conditions in frequency domain.Following a highlight of system linearity and stability concerns for EIS in redox flow batteries,we specifically use our combinatory approach to investigate the effects of different cell component properties on observed galva nostatic EIS spectra and accompanying fitted equivalent circuit element parameters.For the investigated two-electrode full-cell flow battery configuration with the same electrode material on both sides,the EIS spectral data is observed to be dominated by different mass or cha rge transport processes at different ends of the spectrum.Sensitivity analyses of both obtained EIS spectral data and fitted circuit elements parameters show that electrode morphological properties,membrane porosity,and electrolyte inflow conditions predominantly define the EIS spectral data.Insights from the type of analyses performed herein can facilitate flow battery cell/stack diagnostics and targeted performance improvement efforts. 展开更多
关键词 Electrochemical impedance spectroscopy Redox flow battery Multiphysics modeling Equivalent circuit Full cell
在线阅读 下载PDF
A stack-scale three-dimensional model to analyze the operation process of redox flow batteries
8
作者 Haoyao Rao Lyuming Pan +14 位作者 Fan Yang Honghao Qi Xiaoqian Xu Xiangchi Liu Yifei Zhu Can Yang Jia Liu Jiayou Ren Qinping Jian Changxiang He Yubai Li Puiki Leung Yuan Lei Wenjia Li Lei Wei 《Materials Reports(Energy)》 2025年第4期91-100,共10页
Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains in... Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains insufficiently optimized,demanding more profound mechanistic studies and engineering refinements.To address the difficulties in resolving the flow inhomogeneity at the stack scale,this study establishes a multi-physics field coupling model and analyzes the pressure distributions,flow rate differences,active substance concentration,and electrochemical characteristics.The results show that the uneven cell pressure distribution is a key factor affecting the consistency of the system performance,and the increase in the flow rate improves the reactant homogeneity,with both the average concentration and the uniformity factor increasing with the flow rate.In contrast,high current densities lead to an increased imbalance between electrochemical depletion and reactant replenishment,resulting in a significant decrease in reactant concentration in the under-ribs region.In addition,a higher flow rate can expand the high-current-density region where the stack operates efficiently.This study provides a theoretical basis for optimizing the design of the stack components. 展开更多
关键词 Redox flow battery Numerical modeling Uniformity factor Mass transport Pump-based voltage efficiency
在线阅读 下载PDF
Optimization-Based Correction of Turbulence Models for Flow Prediction in Control Valves
9
作者 Shuxun Li Yuhao Tian +3 位作者 Guolong Deng Wei Li Yinggang Hu Xiaoya Wen 《Fluid Dynamics & Materials Processing》 2025年第8期1809-1837,共29页
The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance... The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios. 展开更多
关键词 model calibration artificial neural nets axial flow control valve numerical simulation
在线阅读 下载PDF
Influence of Fractal Dimension on Gas-Driven Two-Phase Flow in Fractal Porous Media:A VOF Model-Based Simulation
10
作者 Xiaolin Wang Richeng Liu +3 位作者 Kai Qiu Zhongzhong Liu Shisen Zhao Shuchen Li 《Computer Modeling in Engineering & Sciences》 2025年第7期289-307,共19页
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe... Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution. 展开更多
关键词 Fractal porous media gas-liquid two-phase flow fractal dimension vortex evolution VOF model displacement efficiency
在线阅读 下载PDF
Review of Control Techniques for Dual Three-phase PMSM Drives with Low Carrier Ratios
11
作者 Minrui Gu Zheng Wang +3 位作者 Ming Cheng Weifeng Su Linyue Shang Po Liu 《CES Transactions on Electrical Machines and Systems》 2025年第2期177-188,共12页
The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the ... The dual three-phase PMSM(DTP-PMSM)drives have received wide attention at high-power high-efficiency applications due to their merits of high output current ability and copper-loss-free field excitation.Meanwhile,the DTPPMSM drive provides higher fault-tolerant capability for highreliability applications,e.g.,pumps and actuators in aircraft.For high-power drives with limited switching frequencies and highspeed drives with large fundamental frequencies,the ratio of switching frequency to fundamental frequency,i.e.,the carrier ratio,is usually below 15,which would significantly degrade the control performance.The purpose of this paper is to review the recent work on the modulation and control schemes for improving the operation performance of DTP-PMSM drives with low carrier ratios.Specifically,three categories of methods,i.e.,the space vector modulation based control,the model predictive control(MPC),and the optimized pulse pattern(OPP)based control are reviewed with principles and performance.In addition,brief discussions regarding the comparison and future trends are presented for low-carrier-ratio(LCR)modulation and control schemes of DTP-PMSM drives. 展开更多
关键词 Dual three-phase permanent magnet synchronous motor(DTP-PMSM) Low-carrier-ratio(LCR) Complex vector control model predictive control(MPC) Optimized pulse pattern(OPP)
在线阅读 下载PDF
Modification of the bubble drag force model and prediction of gasliquid two-phase flow dynamics in blade-type multiphase pumps
12
作者 Yu-Qing Zhang Guang-Tai Shi +3 位作者 Man-Qi Tang Ye-Xiang Xiao Hai-Gang Wen Zong-Liu Huang 《Petroleum Science》 2025年第9期3770-3786,共17页
In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase dra... In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions. 展开更多
关键词 Bubble drag force Gas-liquid two-phase flow Blade-type multiphase pump Population balance model(PBM)
原文传递
Research on the Application of Cash Flow Forecasting Models in Enterprise Investment and Financing Decisions
13
作者 Chenxu Wang 《Proceedings of Business and Economic Studies》 2025年第5期162-168,共7页
Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,... Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development. 展开更多
关键词 Cash flow forecasting model Enterprise investment decision-making Enterprise financing decisions Capital allocation Risk prevention and control
在线阅读 下载PDF
Multi-Polar Evolution of Global Inventive Talent Flow Network-An Endogenous Migration Model and Empirical Analysis
14
作者 Zheng Jianghuai Sun Dongqing +1 位作者 Dai Wei Shi Lei 《China Economist》 2025年第4期80-100,共21页
The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO... The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO Worldwide Patent Statistical Database(PATSTAT)to extract global inventive talent mobility information and analyzes the spatial structural evolution of the global inventive talent flow network.The study finds that this network is undergoing a multi-polar transformation,characterized by the rising importance of a few central countries-such as the United States,Germany,and China-and the increasing marginalization of many peripheral countries.In response to this typical phenomenon,the paper constructs an endogenous migration model and conducts empirical testing using the Temporal Exponential Random Graph Model(TERGM).The results reveal several endogenous mechanisms driving global inventive talent flows,including reciprocity,path dependence,convergence effects,transitivity,and cyclic structures,all of which contribute to the network’s multi-polar trend.In addition,differences in regional industrial structures significantly influence talent mobility choices and are a decisive factor in the formation of poles within the multi-polar landscape.Based on these findings,it is suggested that efforts be made to foster two-way channels for talent exchange between China and other global innovation hubs,in order to enhance international collaboration and knowledge flow.We should aim to reduce the migration costs and institutional barriers faced by R&D personnel,thereby encouraging greater mobility of high-skilled talent.Furthermore,the government is advised to strategically leverage regional strengths in high-tech industries as a lever to capture competitive advantages in emerging technologies and products,ultimately strengthening the country’s position in the global innovation landscape. 展开更多
关键词 Inventive talent flow network MULTIPOLARITY spatial structural evolution regional industrial structure disparities temporal exponential random graph model(TERGM)
在线阅读 下载PDF
Modeling and Analysis of Airlift System Operating in Three-Phase Flow 被引量:6
15
作者 胡东 康勇 +1 位作者 唐川林 王晓川 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期121-132,共12页
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo... Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes. 展开更多
关键词 airlift pump momentum theorem three-phase flow volumetric flux relative error
在线阅读 下载PDF
Modeling of Three-Phase Flow and Interface Deformation of Metal/Bath in Aluminum Reduction Cell With Cathode Protrusion
16
作者 WANG Qiang WANG Fang +1 位作者 LI Bao-kuan FENG Nai-xiang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S1期59-62,共4页
Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed t... Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed to study the impact of the novel cathode protrusion on the molten fluid motion as well as the metal-bath interface deformation.The molten fluid motion in the aluminum reduction ceils is under the combined effect of the electro-magnetic forces(EMFs)and the gas bubbles generated at the anode.A transient inhomogeneous three-phase model(metal-bath-gas bubble)was established in order to calculate more accurate.The results indicate that the metal-bath interface deformation can be reduced significantly by the novel cathode protrusion which is beneficial to the electric energy saving.Besides,The EMFs decreases as a result of the optimizing of the magnetic field due to the novel cathode convex which is an important driving force for the deformation of the interface.In addition,large vortex in the metal flow field is break up into the small vortex by the cathode protrusion and then dissipated due to the viscous force and the hindering effect of the cathode protrusion.The quantity of the vortex as well as the strength of the vortex reduces significantly in the reduction cell with novel cathode protrusion. 展开更多
关键词 aluminum reduction cell novel cathode protrusion inhomogeneous three-phase flow interface deformation electro-magnetic forces VORTEX
原文传递
Water modeling on fluid flow and mixing phenomena in a BOF steelmaking converter 被引量:2
17
作者 Xin-yu Cai Hao-jian Duan +2 位作者 Ding-han Li Anjun Xu Li-feng Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第3期595-607,共13页
A 1∶8 physical water model was constructed to investigate the fluid flow and mixing phenomena in the basic oxygen furnace(BOF)converter.The particle image velocimetry was employed to measure the velocity distribution... A 1∶8 physical water model was constructed to investigate the fluid flow and mixing phenomena in the basic oxygen furnace(BOF)converter.The particle image velocimetry was employed to measure the velocity distribution of the bath and the high-speed camera was applied to capture the cavity shape in the combined blowing BOF converter.The mixing time for varied operating conditions was measured by the stimulus-response approach.The cavity depth increased with the decrease in the lance height and the increase in the top gas flow rate while the bottom blowing gas had little influence on the cavity depth.The minimum cavity depth was obtained under the condition of a 69.8 m^(3)/h top gas flow rate,a 287.5 mm lance height and a 0.93 m^(3)/h bottom blowing gas flow rate,which was 161.2 mm.The mixing time decreased as the lance height decreased and the top blowing gas flow rate increased.The mixing time was first decreased and then increased with the increase in the bottom gas flow rate.With the condition of 69.8 m^(3)/h gas flow rate of top blowing,the 287.5 mm lance height and the 0.93 m^(3)/h gas flow rate of bottom blowing,the mixing time in the converter was 48.65 s.The empirical formula between the stirring power and the mixing time in the converter was calculated. 展开更多
关键词 Water model Fluid flow Particle image velocimetry Mixing time BOF converter
原文传递
Three-phase flow of submarine gas hydrate pipe transport 被引量:8
18
作者 李立 徐海良 杨放琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3650-3656,共7页
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p... In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline. 展开更多
关键词 gas hydrate pipe transport three-phase flow Euler model CFD-PBM model
在线阅读 下载PDF
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:15
19
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 COUPLED liquid-gas-solid three-phase model Pore-air pressure UNSATURATED soil slope stability Rainfall INFILTRATION
在线阅读 下载PDF
Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites 被引量:6
20
作者 Yongbin WANG Junhong GUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期797-812,共16页
A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ... A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently. 展开更多
关键词 piezoelectric quasicrystal (PQC) three-phase elliptical cylinder model effective constant generalized self-consistent method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部