期刊文献+
共找到8,046篇文章
< 1 2 250 >
每页显示 20 50 100
A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone
1
作者 Dongsheng Yang Zixin Li +4 位作者 Yaoyao Lian Ziyao Fu Tianjiao Li Pengtao Ma Guoping Yang 《Chinese Chemical Letters》 2025年第3期566-569,共4页
By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68... By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68H_(2)O(1)has been successfully obtained via one-pot method and systematically characterized by IR,XPS,solid UV spectra,PXRD pattern,and TGA analysis.The analysis of X-ray crystallography exhibits that compound 1 crystallizes in the triclinic space group P-1 and presents a novel square-shaped Zr-substituted tetrameric polyoxometalate.The catalytic oxidation of sulfides by 1 are carried out,which demonstrate that 1 exhibits a good performance for the catalytic oxidation of sulfides to sulfones with high conversion(100%)and high selectivity(100%). 展开更多
关键词 Zr-substituted Square-shaped Polyoxotungstates catalytic oxidation SULFIDE
原文传递
Four tartaric acid-bridged tetra-europium(III)-containing antimonotungstate with catalytic oxidation of thioethers/alcohols
2
作者 Yuanping Jiang Haoqi Liu +4 位作者 Jiawei Zhang Luying Jiao Xiaoling Lin Fuhua Zhang Guoping Yang 《Chinese Journal of Structural Chemistry》 2025年第7期19-24,共6页
A novel tetra-europium(III)-containing antimonotungstate,Na_(8.2)[H_(2)N(CH_(3))_(2)]_(9)[Na_(10.8)(tar)_(4)(H_(2)O)_(20)(Eu_(2)Sb_(2)W_(21)O_(72))_(2)]·44.5H_(2)O(EuSbW,H_(4)tar=dl-tartaric acid),has been synthe... A novel tetra-europium(III)-containing antimonotungstate,Na_(8.2)[H_(2)N(CH_(3))_(2)]_(9)[Na_(10.8)(tar)_(4)(H_(2)O)_(20)(Eu_(2)Sb_(2)W_(21)O_(72))_(2)]·44.5H_(2)O(EuSbW,H_(4)tar=dl-tartaric acid),has been synthesized and characterized.The dimeric polyoxoanion of EuSbW consists of two Dawson-like{Eu_(2)Sb_(2)W_(21)}units bridged by four dl-tartaric acid ligands.The adjacent carboxyl and hydroxy groups in each tartaric acid simultaneously chelate with W and Eu atoms from different{Eu_(2)Sb_(2)W_(21)}units,thereby forming the dimeric structure.EuSbW represents an extremely rare polyoxometalate where four tartaric acid ligands function as connectors to bridge two{Eu_(2)Sb_(2)W_(21)}units.Additionally,EuSbW exhibits excellent catalytic activity and reusability in the oxidation of thioethers and alcohols,achieving 100%conversion and>99%selectivity for various thioethers,and 85–100%conversion with 90–99%selectivity for diverse alcohols under mild conditions. 展开更多
关键词 Antimonotungstate Tartaric acid catalytic oxidation THIOETHERS ALCOHOLS
原文传递
Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation
3
作者 Qingbai Tian BingLiang Yu +3 位作者 Zhihao Li Wei Hong Qian Li Xing Xu 《Chinese Chemical Letters》 2025年第6期557-561,共5页
Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and re... Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device. 展开更多
关键词 PEROXYMONOSULFATE catalytic membranes Metal oxides Fenton-like reaction Ceramic membrane
原文传递
Interface engineering of Pt/CeO_(2)-{100}catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation
4
作者 Peng Zhang Yitao Yang +8 位作者 Tian Qin Xueqiu Wu Yuechang Wei Jing Xiong Xi Liu Yu Wang Zhen Zhao Jinqing Jiao Liwei Chen 《Chinese Chemical Letters》 2025年第2期167-172,共6页
Herein,we fabricate an embedding structure at the interface between Pt nanoparticles(NPs)and CeO_(2)-{100}nanocubes with surface defect sites(CeO_(2)-SDS)through quenching and gas bubbling-assisted membrane reduction ... Herein,we fabricate an embedding structure at the interface between Pt nanoparticles(NPs)and CeO_(2)-{100}nanocubes with surface defect sites(CeO_(2)-SDS)through quenching and gas bubbling-assisted membrane reduction methods.The in-situ substitution of Pt NPs for atomic-layer Ce lattice significantly increases the amount of reactive oxygen species from 133.68μmol/g to 199.44μmol/g.As a result,the distinctive geometric structure of Pt/CeO_(2)-SDS catalyst substantially improves the catalytic activity and stability for soot oxidation compared with the catalyst with no quenching process,i.e.,its T_(50)and TOF values are 332°C and 2.915 h^(-1),respectively.Combined with the results of experimental investigations and density functional theory calculations,it is unveiled that the unique embedding structure of Pt/CeO_(2)-SDS catalyst can facilitate significantly electron transfer from Pt to the CeO_(2)-{100}support,and induce the formation of interfacial[Ce-O_(x)-Pt_(2)]bond chains,which plays a crucial role in enhancing the key step of soot oxidation through the dual activation of surface lattice oxygen and molecular O_(2).Such a fundamental revelation of the interfacial electronic transmission and corresponding modification strategy contributes a novel opportunity to develop high-efficient and stable noble metal catalysts at the atomic level. 展开更多
关键词 Pt NPs Defective ceria Nanocube catalytic oxidation Soot particles
原文传递
Bentonite supported cobalt catalyst prepared by blending method for the catalytic oxidation of desulfurization by-product sulfite:Catalytic performance and mechanism
5
作者 Fanbo Zeng Jing Zhu +7 位作者 Feng Liu Guoyu Zhang Weirun Li Wenye Li Zhiwei Shang Hong You Shuxiao Wang Zhipeng Li 《Journal of Environmental Sciences》 2025年第10期584-595,共12页
Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid ... Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid catalyst Co-Bent(bentonite supported cobalt)was prepared by blending method for MgSO_(3) oxidation with bentonite as the carrier and cobalt as the active component.At the calcination temperature of 550℃ and the Co loading level of 3 wt.%,the catalyst showed excellent catalytic performance for the oxidation of high concentration MgSO_(3) slurry,and the oxidation rate of MgSO_(3) was 0.13 mol/(L·h).The research indicated that the active component was uniformly distributed within porous structure of the catalyst as Co_(3)O_(4),which facilitated the oxidation of SO_(3)^(2-) catalyzed by Co_(3)O_(4).Kinetic researches indicated the oxidation rate of MgSO_(3) was influenced by the catalyst dosage,the reaction temperature,the solution pH,the airflow rate,and the SO_(3)^(2-) concentration.Additionally,after recycling experiments,the regenerated catalyst retained its high catalytic performance for the MgSO_(3) oxidation.The reaction mechanism for the catalytic oxidation of MgSO_(3) by Co-Bent catalyst was also proposed.The generation of active free radicals(OH·,SO_(4)^(-)·,SO_(3)^(-)·,SO_(5)^(-)·)accelerated the MgSO_(3) oxidation.These results provide theoretical support for the treatment of MgSO_(3) and the development of durable catalyst. 展开更多
关键词 Magnesium sulfite BENTONITE Blending method Solid catalyst catalytic oxidation Reaction mechanism
原文传递
Ru single atoms in Mn_(2)O_(3)efficiently promote the catalytic oxidation of 5-hydroxymethylfurfural through dual activation of lattice and molecular oxygen
6
作者 Peiya Chen Xinghao Li +6 位作者 Yuhan Liu Huai Liu Rui Zhang Wenlong Jia Junhua Zhang Yong Sun Lincai Peng 《Green Energy & Environment》 2025年第6期1337-1347,共11页
Concurrent activation of lattice oxygen(O_L)and molecular oxygen(O_(2))is crucial for the efficient catalytic oxidation of biomass-derived molecules over metal oxides.Herein,we report that the introduction of ultralow... Concurrent activation of lattice oxygen(O_L)and molecular oxygen(O_(2))is crucial for the efficient catalytic oxidation of biomass-derived molecules over metal oxides.Herein,we report that the introduction of ultralow-loading of Ru single atoms(0.42 wt%)into Mn_(2)O_(3)matrix(0.4%Ru-Mn_(2)O_(3))greatly boosts its catalytic activity for the aerobic oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA).The FDCA productivity over the 0.4%Ru-Mn_(2)O_(3)(5.4 mmol_(FDCA)g_(cat)h^(-1))is 4.9 times higher than the Mn_(2)O_(3).Especially,this FDCAproductivity is also significantly higher than that of existing Ru and Mn-based catalysts.Experimental and theoretical investigations discovered that the Ru single atom facilitated the formation of oxygen vacancy(O_(v))in the catalyst,which synergistically weakened the Mn-O bond and promoted the activation of O_L.The co-presence of Ru single atoms and O_(v)also promote the adsorption and activation of both O_(2)and HMF.Consequently,the dehydrogenation reaction energy barrier of the rate-determining step was reduced via both the O_L and chemisorbed O_(2)dehydrogenation pathways,thus boosting the catalytic oxidation reactions. 展开更多
关键词 catalytic oxidation reaction Single atom catalyst 5-HYDROXYMETHYLFURFURAL 2 5-Furandicarboxylic acid Lattice oxygen
在线阅读 下载PDF
Synergistic catalytic sites in platinum-rare earth alloys to modulate competitive activation of multiple reactants for preferential CO oxidation
7
作者 Yue Jiang Haorun Li +7 位作者 Kunming Hou Ze Liu Lina Li Yang Liu Heng Zhang Yanheng Hao Ying Liu Shanghong Zeng 《Journal of Energy Chemistry》 2025年第6期427-438,I0010,共13页
Intercalation of rare-earth(RE)into Pt offers an option to optimize the electronic structure of Pt-based catalysts by interaction effect,in which the synergistic catalytic sites are of great significance,yet the under... Intercalation of rare-earth(RE)into Pt offers an option to optimize the electronic structure of Pt-based catalysts by interaction effect,in which the synergistic catalytic sites are of great significance,yet the underpinning mechanism remains elusive.Herein,the introduction of silanol nests enables the alloy formation on the SiO_(2)surface.The amination modification is disclosed to induce the electron transfer from RE to Pt and weaken the adsorption of CO on electron-rich Pt species.In situ/operando spectroscopic analyses in conjunction with density functional theory calculations demonstrate the electronic couple of Pt atoms and adjacent Ce atoms concurrently achieves the enhancement of CO oxidation and suppression of H_(2)oxidation.Additionally,CO_(2)is readily desorbed from the Pt_(5)Ce(111)surface to enhance intrinsic activity and longevity.These findings provide an atomic-level insight into the synergistic catalytic sites on regulating the electronic state of the Pt-RE alloy catalysts toward highly selective oxidation reactions. 展开更多
关键词 Platinum-rare earth alloys Amination modification Synergistic catalytic sites Pt_(5)Ce Preferential CO oxidation
在线阅读 下载PDF
Supported Co_(3)O_(4) catalyst on modified UiO-66 by Ce^(4+)for completely catalytic oxidation of toluene
8
作者 Yongchang Zhao Jun Cao +4 位作者 Shihong Tian Xiaoxiao Zhang Yadi Yang Zhian Gong Xiaojiang Yao 《Journal of Rare Earths》 2025年第7期1435-1445,共11页
Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by... Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples. 展开更多
关键词 Bimetal center Uio-66 Selectivity of CO_(2) Non-noble metals catalyst catalytic oxidation of toluene Rare earths
原文传递
Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts:A review
9
作者 Honghong Zhang Zhiwei Wang +3 位作者 Hongxia Lin Yuxi Liu Hongxing Dai Jiguang Deng 《Journal of Environmental Sciences》 2025年第9期858-888,共31页
Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is... Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs.Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity.To further lower the cost of catalysts,single atom catalysts(SAC)have been fabricated and extensively studied for application in VOCs oxidation due to their 100%atom-utilization efficiency and unique catalytic performance.In this review,we comprehensively summarize the recent advances in supported noble metal(e.g.,Pt,Pd,Au,and Ag)catalysts and SAC for VOCs oxidation since 2015.Firstly,this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts,including particle size,valence state and dispersion of noble metals,properties of the support,metal oxide/ion modification,preparation method,and pretreatment conditions of catalysts.Secondly,we briefly summarize the catalytic performance of SAC for typical VOCs.Finally,we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation. 展开更多
关键词 Volatile organic compounds catalytic oxidation Supported noble metal catalysts Single atom catalysts Pt Pd Au and Ag
原文传递
Progress in research on catalysts for catalytic oxidation of formaldehyde 被引量:40
10
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期102-122,共21页
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme... Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered. 展开更多
关键词 FORMALDEHYDE catalytic oxidation Metal oxide catalyst Noble metal catalyst Low-temperature catalytic activity
在线阅读 下载PDF
Synthesis of three-dimensional ordered mesoporous MnO_2 and its catalytic performance in formaldehyde oxidation 被引量:21
11
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期27-31,共5页
Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ... Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation. 展开更多
关键词 Three-dimensional ordered material Mesoporous structure Manganese oxide FORMALDEHYDE catalytic oxidation
在线阅读 下载PDF
Effect of pore size in mesoporous MnO_2 prepared by KIT-6 aged at different temperatures on ethanol catalytic oxidation 被引量:3
12
作者 拜冰阳 乔琦 +2 位作者 李艳萍 彭悦 李俊华 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期630-638,共9页
KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these cat... KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these catalysts and the effect of pore sizes on ethanol catalytic oxidation were investigated.Mn‐40,Mn‐100,and Mn‐150 have triple,double,and single pore systems,respectively.On decreasing the aging temperature of KIT‐6,the pore sizes of KIT‐6 decrease and that of mesoporous MnO2 catalysts increase.The pore sizes and catalytic activities increase in the order:Mn‐40>Mn‐100>Mn‐150.Mn‐40 catalyst has a higher TOF(0.11 s–1 at 120°C)and the best catalytic activity for ethanol oxidation because of a bigger pore size with three pore systems with maximum distribution at 1.9,3.4,and 6.6 nm,decrease in symmetry and degree of order,more surface lattice oxygen species,oxygen vacancies resulting from more Mn3+ions,and better low‐temperature reducibility. 展开更多
关键词 Mesoporous MnO2 Pore channel KIT‐6 mesoporous silica catalytic activity Ethanol oxidation
在线阅读 下载PDF
Electrocatalytic Oxidation of Saccharides at MoOx/AuNPs Modified Electrode Towards Analytical Application 被引量:1
13
作者 吴守国 张志鑫 +2 位作者 赵祺平 周磊 姚瑶 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期600-606,I0004,共8页
The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of th... The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of the MoOx/AuNPs composite were char-acterized by scan electron microscopy and X-ray photoelectron spectroscopy respectively, and the electrocatalytic oxidation of glucose at the MoOx/AuNPs composite film was inves-tigated and analyzed in detail. It was shown that the MoOx/AuNPs composite was of strong electrocatalytic activity towards oxidation of glucose as well as other saccharides, so that an attempt was made for direct voltammetric determination of glucose. Then the positive scan polarization reverse catalytic voltammetry was proposed for the first time. Based on this method, the pure oxidation current was extracted by subtraction of the blank current in the reverse scan. The current sensitivity was enhanced tremendously and the signal to noise ra-tio was improved adequately. The electrocatalytic oxidation of glucose at the MoOx/AuNPs modified electrode was performed in alkaline medium, a wide linear range from 0.01 mmol/L to 4.0 mmol/L of glucose, a higher current sensitivity of 2.35 mA/(mmol/L·cm2), and a lower limit of detection of 9.01 μmol/L (at signal/noise=3) were achieved. In addition, the electrocatalytic oxidation of other saccharides such as lactose, fructose and sucrose was also evaluated. 展开更多
关键词 Molybdenum oxide Gold nanoparticle Non-enzymatic biosensor Positive scanpolarization reverse catalytic voltammetry
在线阅读 下载PDF
Effects of Co_3O_4 nanocatalyst morphology on CO oxidation:Synthesis process map and catalytic activity 被引量:9
14
作者 曾良鹏 李孔斋 +2 位作者 黄樊 祝星 李宏程 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期908-922,共15页
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy... This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity. 展开更多
关键词 Cobalt oxide nanocatalyst Synthesis process map Morphology effect catalytic activity Carbon monoxide oxidation
在线阅读 下载PDF
Effect of Precipitation Method and Ce Doping on the Catalytic Activity of Copper Manganese Oxide Catalysts for CO Oxidation 被引量:2
15
作者 张学彬 马扩颜 +3 位作者 张灵辉 雍国平 戴亚 刘少民 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期97-102,I0004,共7页
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were... The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably. 展开更多
关键词 CO oxidation Ce-doped Copper manganese oxide catalytic activity Reverse co-precipitation
在线阅读 下载PDF
Pd micro-nanoparticles electrodeposited on graphene/polyimide membrane for electrocatalytic oxidation of formic acid 被引量:3
16
作者 张焱 王琴 +2 位作者 叶为春 李佳佳 王春明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2986-2993,共8页
A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microsc... A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst. 展开更多
关键词 Pd micro-nanoparticles graphene/polyimide membrane carboxyl carbon nanotubes/polyimide membrane electro catalytic oxidation formic acid electrochemical deposition
在线阅读 下载PDF
Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs 被引量:27
17
作者 唐文翔 武晓峰 +4 位作者 刘刚 李双德 李东艳 李文辉 陈运法 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第1期62-69,共8页
Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(b... Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(benzene, toluene and ethyl acetate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), hydrogen temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method(Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds(VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxygen species which resulted in the enhancement of catalytic abilities. 展开更多
关键词 hierarchical layered-stacking catalyst Mn-Ce composite oxides VOCs catalytic oxidation rare earths
原文传递
Low-temperature catalytic oxidation of NO over Mn-Ce-O_x catalyst 被引量:14
18
作者 李华 唐晓龙 +1 位作者 易红宏 于丽丽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期64-68,共5页
A series of manganese-cerium oxide catalysts were prepared by different methods and used for low-temperature catalytic oxidation of NO in the presence of excess O2.Their surface properties were evaluated by means of B... A series of manganese-cerium oxide catalysts were prepared by different methods and used for low-temperature catalytic oxidation of NO in the presence of excess O2.Their surface properties were evaluated by means of BET and were characterized by using scanning electron microscopy(SEM) and X-ray diffractometer(XRD).The activity test of Mn-Ce-Ox catalysts showed that addition of Ce enhanced the activities of NO oxidation.The most active catalysts with a molar Ce/(Mn+Ce) ratio of 0.3 were prepared by co-precip... 展开更多
关键词 NOx catalytic oxidation NO manganese oxide CERIUM rare earths
在线阅读 下载PDF
Removal of formaldehyde over Mn_xCe_(1- x)O_2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation 被引量:9
19
作者 Jia Wei Li Kuan Lun Pan +2 位作者 Sheng Jen Yu Shaw Yi Yan Moo Been Chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第12期2546-2553,共8页
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite str... MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal. 展开更多
关键词 FORMALDEHYDE Volatile organic compounds Indoor air pollutant Thermal catalytic oxidation Ozone catalytic oxidation
原文传递
Effect of pretreatment on Pd/Al_2O_3catalyst for catalytic oxidation of o-xylene at low temperature 被引量:17
20
作者 Shaoyong Huang Changbin Zhang Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1206-1212,共7页
The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts ... The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results showed that the pretreatment dramatically changed the Pd/PdO ratio and then significantly affected the Pd/Al2O3 activity; while the pretreatment had not much influence on Pd particle size. The Pd/Al2O3 pre-reduced at 300~C/400~C, which has fully reduced Pd species, showed the highest activity; while the fresh Pd/Al2O3, which has fully oxidized Pd species, presented the worst performance, indicating the Pd chemical state plays an important role in the catalytic activity for the o-xylene oxidation. It is concluded that metallic Pd is the active species on the Pd/Al2O3 catalyst for the catalytic oxidation of o-xylene at low temperature. 展开更多
关键词 PD/AL2O3 O-XYLENE catalytic oxidation noble metal VOC
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部