期刊文献+
共找到4,019篇文章
< 1 2 201 >
每页显示 20 50 100
ALSTNet:Autoencoder fused long-and short-term time-series network for the prediction of tunnel structure
1
作者 Bowen Du Haohan Liang +3 位作者 Yuhang Wang Junchen Ye Xuyan Tan Weizhong Chen 《Deep Underground Science and Engineering》 2025年第1期72-82,共11页
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa... It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future. 展开更多
关键词 autoencoder deep learning structural health monitoring time-series prediction
原文传递
A comprehensive evaluation of RNA secondary structures prediction methods
2
作者 Xinlong Chen En Lou +2 位作者 Zouchenyu Zhou Ya-Lan Tan Zhi-Jie Tan 《Chinese Physics B》 2025年第8期115-127,共13页
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa... RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures. 展开更多
关键词 RNA secondary structure prediction computational methods comprehensive evaluation traditional methods deep-learning-based methods
原文传递
Grammar Model Based on Lexical Substring Extraction for RNA Secondary Structure Prediction
3
作者 唐四薪 谭晓兰 周勇 《Agricultural Science & Technology》 CAS 2012年第4期704-707,745,共5页
[Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm su... [Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm suitable for the lexicalized stochastic grammar model was proposed. The word grid mode was used to extract and divide RNA sequence to acquire lexical substring, and the cloud classifier was used to search the maximum probability of each lemma which was marked as a certain sec- ondary structure type. Then, the lemma information was introduced into the training stochastic grammar process as prior information, realizing the prediction on the sec- ondary structure of RNA, and the method was tested by experiment. [Result] The experimental results showed that the prediction accuracy and searching speed of stochastic grammar cloud model were significantly improved from the prediction with simple stochastic grammar. [Conclusion] This study laid the foundation for the wide application of stochastic grammar model for RNA secondary structure prediction. 展开更多
关键词 RNA secondary structure Stochastic grammar Lexicalize structure prediction
在线阅读 下载PDF
Prediction of Protein OmpH in Structure of C47-8 Pasteurella multocida
4
作者 繁萍 张瑞强 +3 位作者 张卫 丰琳琅 陈忍霞 赵静 《Agricultural Science & Technology》 CAS 2012年第6期1186-1189,1206,共5页
[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and pr... [Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak. 展开更多
关键词 PmC47-8 strain OmpH protein structure prediction
在线阅读 下载PDF
Prediction and Reduction of StructureBorne Noise in Vehicle
5
作者 王彦平 郑慕侨 《Journal of Beijing Institute of Technology》 EI CAS 1995年第2期167+160-166,共8页
The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) ... The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise. 展开更多
关键词 noise control modal synthesis method/coupled soundand structure prediction of vibration and noise
在线阅读 下载PDF
Artificial intelligence goes from predicting structure to predicting stability
6
作者 Gary J.Pielak Conggang Li Maili Liu 《Magnetic Resonance Letters》 2025年第1期75-76,共2页
AlphaFold[1]has turned everyone into a structural biologist.No need for knowledge of Fourier transforms or spectral density,driven by artificial intelligence(AI),all one needs to do is enter the primary structure of a... AlphaFold[1]has turned everyone into a structural biologist.No need for knowledge of Fourier transforms or spectral density,driven by artificial intelligence(AI),all one needs to do is enter the primary structure of a folded protein,and out pops a tertiary structure nearly as good as one from an experiment-based structure. 展开更多
关键词 structure. structure predicting
在线阅读 下载PDF
Corrosion Fatigue Life Prediction of Aircraft Structure Based on Fuzzy Reliability Approach 被引量:11
7
作者 谭晓明 陈跃良 金平 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期346-351,共6页
Material performance of LY12CZ aluminum is greatly degraded because of corrosion and corrosion fatigue, which severely affect the integrity and safety of aircraft structure, especially those of lbe navy aircraft struc... Material performance of LY12CZ aluminum is greatly degraded because of corrosion and corrosion fatigue, which severely affect the integrity and safety of aircraft structure, especially those of lbe navy aircraft structure. The corrosion and corrosion fatigue failure process of aircraft structure are directly concerned with many factors, such as load, material characteristics, corrosive environment and so on. The damage mechanism is very complicated, and there are both randomness and fuzziness in the failure process. With consideration of the limitation of those conventional probabilistic approaches for prediction of corrosion fatigue life of aircraft structure at present, and based on the operational load spectrum obtained through investigating service status of the aircraft in naval aviation force, a fuzzy reliability approach is proposed, which is more reasonable and closer to the fact. The effects of the pit aspect ratio, the crack aspect ratio and all fuzzy factors on corrosion fatigue life of aircraft structure are discussed. The results demonstrate that the approach can be applied to predict the corrosion fatigue life of aircraft structure. 展开更多
关键词 aircraft structure CORROSION life prediction fuzzy reliability corrosion fatigue
在线阅读 下载PDF
Graph neural link predictor based on cycle structure
8
作者 Yanlin Yang Zhonglin Ye +2 位作者 Lei Meng Mingyuan Li Haixing Zhao 《CAAI Transactions on Intelligence Technology》 2025年第2期615-632,共18页
Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not ex... Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not explore the multivariate interactions between nodes from the perspective of higher-order structural information present in the network.The cycle structure is a higher-order structure that lies between the star and clique structures,where all nodes within the same cycle can interact with each other,even in the absence of direct edges.If a node is encompassed by multiple cycles,it indicates that the node interacts and associates with a greater number of nodes in the network,and it means the node is more important in the network to some extent.Furthermore,if two nodes are included in multiple cycles,it signifies the two nodes are more likely to be connected.Therefore,firstly,a multi-information fusion node importance algorithm based on the cycle structure information is proposed,which integrates both high-order and low-order structural information.Secondly,the obtained integrated structure information and node feature information is regarded as the input features,a two-channel graph neural network model is designed to learn the cycle structure information.Then,the cycle structure information is utilised for the task of link prediction,and a graph neural link predictor with multi-information interactions based on the cycle structure is developed.Finally,extensive experimental validation and analysis show that the node ranking result of the proposed node importance index is more consistent with the actual situation,the proposed graph neural network model can effectively learn the cycle structure information,and using higher-order structural information—cycle information proves to significantly enhance the overall link prediction performance. 展开更多
关键词 cycle structure higher-order structure link prediction multi-information interactions neural network
在线阅读 下载PDF
The CALYPSO methodology for structure prediction 被引量:4
9
作者 Qunchao Tong Jian Lv +1 位作者 Pengyue Gao Yanchao Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期22-29,共8页
Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods ... Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions. 展开更多
关键词 structure prediction CALYPSO method CRYSTAL structure POTENTIAL ENERGY surface
原文传递
Porosity prediction based on improved structural modeling deep learning method guided by petrophysical information
10
作者 Bo-Cheng Tao Huai-Lai Zhou +3 位作者 Wen-Yue Wu Gan Zhang Bing Liu Xing-Ye Liu 《Petroleum Science》 2025年第6期2325-2338,共14页
Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for ... Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method. 展开更多
关键词 Porosity prediction Deep learning Improved structural modeling Petrophysical information
原文传递
Data-driven predictive model of coal permeability based on microscopic fracture structure characterization
11
作者 Tianhao Yan Xiaomeng Xu +4 位作者 Jiafeng Liu Yihuai Zhang Muhammad Arif Xiaowei Xu Qiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4476-4489,共14页
Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent he... Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent heterogeneity and complex internal structure of coal,a well-established method for predicting permeability based on microscopic fracture structures remains elusive.This paper presents a novel integrated approach that leverages the intrinsic relationship between microscopic fracture structure and permeability to construct a predictive model for coal permeability.The proposed framework encompasses data generation through the integration of three-dimensional(3D)digital core analysis and numerical simulations,followed by data-driven modeling via machine learning(ML)techniques.Key data-driven strategies,including feature selection and hyperparameter tuning,are employed to improve model performance.We propose and evaluate twelve data-driven models,including multilayer perceptron(MLP),random forest(RF),and hybrid methods.The results demonstrate that the ML model based on the RF algorithm achieves the highest accuracy and best generalization capability in predicting permeability.This method enables rapid estimation of coal permeability by inputting two-dimensional(2D)computed tomography images or parameters of the microscopic fracture structure,thereby providing an accurate and efficient means of permeability prediction. 展开更多
关键词 Microscopic fracture structure Lattice Boltzmann method Machine learning Coal permeability predictive model
在线阅读 下载PDF
Novel integration of PSO-enhanced damage mechanics and finite element method for predicting medium-low-cycle fatigue life in perforated structures
12
作者 Qianyu XIA Zhixin ZHAN +3 位作者 Yue MEI Yanjun ZHANG Weiping HU Qingchun MENG 《Chinese Journal of Aeronautics》 2025年第2期128-142,共15页
In this research,we introduce an innovative approach that combines the Continuum Damage Mechanics-Finite Element Method(CDM-FEM)with the Particle Swarm Optimization(PSO)-based technique,to predict the Medium-Low-Cycle... In this research,we introduce an innovative approach that combines the Continuum Damage Mechanics-Finite Element Method(CDM-FEM)with the Particle Swarm Optimization(PSO)-based technique,to predict the Medium-Low-Cycle Fatigue(MLCF)life of perforated structures.First,fatigue tests are carried out on three center-perforated structures,aiming to assess their fatigue life under various strengthening conditions.These tests reveal significant variations in fatigue life,accompanied by an examination of crack initiation through the analysis of fatigue fracture surfaces.Second,an innovative fatigue life prediction methodology is applied to perforated structures,which not only forecasts the initiation of fatigue cracks but also traces the progression of damage within these structures.It leverages an elastoplastic constitutive model integrated with damage and a damage evolution model under cyclic loads.The accuracy of this approach is validated by comparison with test results,falling within the three times error band.Finally,we explore the impact of various strengthening techniques,including cross-sectional reinforcement and cold expansion,on the fatigue life and damage evolution of these structures.This is achieved through an in-depth comparative analysis of both experimental data and computational predictions,which provides valuable insights into the behavior of perforated structures under fatigue conditions in practical applications. 展开更多
关键词 Continuum damage mechanics Medium-low-cycle fatigue Particle swarm optimization Life prediction Perforated structures
原文传递
The Analysis of Seismic Data Structure and Oil and Gas Prediction 被引量:15
13
作者 WangShangxu LinChangrong 《Applied Geophysics》 SCIE CSCD 2004年第2期75-82,共8页
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical... In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz). 展开更多
关键词 hydrocarbon prediction hydrocarbon oil-bearing stratum seismic data structure data value seismic facies
在线阅读 下载PDF
Mem Brain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction 被引量:3
14
作者 Xi Yin Jing Yang +2 位作者 Feng Xiao Yang Yang Hong-Bin Shen 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期12-19,共8页
Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate t... Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments,accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called Mem Brain, whose input is the amino acid sequence. Mem Brain consists of specialized modules for predicting transmembrane helices, residue–residue contacts and relative accessible surface area of a-helical membrane proteins. Mem Brain achieves aprediction accuracy of 97.9% of ATMH, 87.1% of AP,3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. Mem BrainContact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction,respectively. And Mem Brain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins.Mem Brain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/Mem Brain/. 展开更多
关键词 Transmembrane a-helices structure prediction Machine learning Contact map prediction Relative accessible surface area
在线阅读 下载PDF
Variable structure control with sliding mode prediction for discrete-time nonlinear systems 被引量:4
15
作者 Lingfei XIAO Hongye SU Xiaoyu ZHANG Jian CHU 《控制理论与应用(英文版)》 EI 2006年第2期140-146,共7页
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining... A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination. 展开更多
关键词 Variable structure control Sliding mode prediction Discrete-time nonlinear system Pendulum experiment
在线阅读 下载PDF
Research on Service Life Prediction Model of Concrete Structure of Sea-crossing Bridge 被引量:2
16
作者 WANG C J ZHANG G Z +3 位作者 LIU K X TU L Q LI J H QIN M Q 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期141-146,共6页
According to the chloride corrosion environment,service life prediction model of concrete structure of sea-crossing bridge was built using modified Fick's second law and the whole probability calculation method,wh... According to the chloride corrosion environment,service life prediction model of concrete structure of sea-crossing bridge was built using modified Fick's second law and the whole probability calculation method,which was suitable for China. Furthermore,a visual service life prediction program of concrete structure was developed by optimized Monte Carlo method. Meanwhile,Life 365 program was compared,indicating reliability of the prediction program. Finally,the validity of prediction model was verified in JinTang Bridge of Zhoushan Island Mainland Linkage Project. 展开更多
关键词 sea-crossing bridge concrete structure service life prediction MODEL verify
原文传递
Sequence identification, structure prediction and validation of tannase from Aspergillusniger N5-5 被引量:2
17
作者 Shuai Zhang Feng-Chao Cui +1 位作者 Yong Cao Yun-Qi Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第7期1087-1090,共4页
Tannases produced by filamentous fungi are in a family of important hydrolases of gallotannins and have broad industry applications.But until now,the 3-D structures of fungi tannases have not been reported.The protein... Tannases produced by filamentous fungi are in a family of important hydrolases of gallotannins and have broad industry applications.But until now,the 3-D structures of fungi tannases have not been reported.The protein sequence deduced from the cDNA sequence obtained using RT-PCR amplification was identified as tannase through sequence alignment and phylogenetic analysis.Structure models based on the tannase sequence were collected using I-TASSER,and the model with the best match to the surface charge density-pH titration profile was selected as the final structure for tannase from Aspergillusniger N5-5.This work provides an effective method for protein structure research.The structure constructed in this work should be very important to understand the enzyme bioactivities and further developments of fungi tannases. 展开更多
关键词 Aspergillusniger N5-5 Sequence identification structure prediction Surface charge density TANNASE Zeta potential
原文传递
Typhoon Track,Intensity,and Structure:From Theory to Prediction 被引量:2
18
作者 Zhe-Min TAN Lili LEI +2 位作者 Yuqing WANG Yinglong XU Yi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第11期1789-1799,共11页
To improve understanding of essential aspects that influence forecasting of tropical cyclones(TCs),the National Key Research and Development Program,Ministry of Science and Technology of the People's Republic of C... To improve understanding of essential aspects that influence forecasting of tropical cyclones(TCs),the National Key Research and Development Program,Ministry of Science and Technology of the People's Republic of China conducted a five-year project titled“Key Dynamic and Thermodynamic Processes and Prediction for the Evolution of Typhoon Intensity and Structure”(KPPT).Through this project,new understandings of TC intensification,including outer rainbanddriven secondary eyewall formation and the roles of boundary layer dynamics and vertical wind shear,and improvements to TC data assimilation with integrated algorithms and adaptive localizations are achieved.To promote a breakthrough in TC intensity and structure forecasting,a new paradigm for TC evolution dynamics(i.e.,the correlations,interactions,and error propagation among the triangle of TC track,intensity,and structure)is proposed;and an era of dynamic-constrained,big-data driven,and strongly coupled data assimilation at the subkilometer scale and seamless prediction is expected. 展开更多
关键词 TYPHOONS TRACK INTENSITY structure theories predictions
在线阅读 下载PDF
Cluster structure prediction via CALYPSO method 被引量:1
19
作者 Yonghong Tian Weiguo Sun +2 位作者 Bole Chen Yuanyuan Jin Cheng Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期1-9,共9页
Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clus... Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies. 展开更多
关键词 CALYPSO METHOD CLUSTER structure prediction BORON CLUSTER SILICON CLUSTER
原文传递
RNA structure prediction:Progress and perspective 被引量:1
20
作者 时亚洲 吴园燕 +1 位作者 王凤华 谭志杰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期88-97,共10页
Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some st... Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three- dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling. 展开更多
关键词 RNA structure prediction secondary structure three-dimensional (3D) structure coarse-grainedmodel
原文传递
上一页 1 2 201 下一页 到第
使用帮助 返回顶部