In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through min...In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.展开更多
In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination o...In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination of a numerical wind model in full 3D curvilinear coordinates, along with a high resolution boundary-fitted grid is used. Boundary conditions were obtained from ten years (2002-2012) of measured offshore wind data. Prevailing winds from April to September during that period of observations were selected for the simulations. For the cases analyzed, it was found that at the points of the study region (PSS, PSM, PM), wind speed increased about 10% to 20% of its offshore values, while inland they decreased about 86% to 96%. This spatial behavior agreed very well with the observed local winds. A coastal jet (CJ), 35 km long with speeds about 1.5 - 2 m/s, emanating from PSS was found for NNW winds. Modeled winds were also used to compute wind stresses, wind stress curl, and CUI fields. Wind stress values agreed very well to those reported in the literature. High values of wind stress curl, and CUI were found at the lee of the points (PSS, PSM, PM). Indirect estimations of sea surface currents were about 15 - 20 cm/s offshore and 5 - 10 cm/s at the coast.展开更多
Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high tem...Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high temporal resolution.Radiance measurements from the Geostationary Interferometric Infrared Sounder(GIIRS),obtained with 15-min temporal resolution during Typhoon Maria(2018) and 30-min temporal resolution during Typhoon Lekima(2019),were used to derive three-dimensional(3D) horizontal winds by tracking the motion of atmospheric moisture.This work focused on the impact of assimilation of 3D winds on typhoon analyses and forecasts using the operational NWP model of the China Meteorological Administration(CMA-MESO),and improved understanding of the potential benefits of assimilating dynamic information from geostationary sounder data with higher temporal resolution.The standard deviation of the observations minus simulations revealed that the accuracy of the derived 3D winds with 15-min resolution was higher than that of derived winds with 30-min resolution.Experiments showed that the assimilation system can effectively absorb the information of the derived 3D winds,and that dynamic information from clear-sky areas can be transferred to typhoon areas.In typhoon prediction,assimilation of the derived 3D winds had greatest influence on the typhoon track,and less influence on the maximum wind speed.Assimilation of the derived 3D winds reduced the average track error by 17.4% for Typhoon Maria(2018) and by 3.5% for Typhoon Lekima(2019) during their entire 36-h forecasts initiated at different times.Assimilation of GIIRS dynamic information can substantially improve forecasts of heavy precipitation by CMAMESO.Results indicate that the assimilation of dynamic information from high-temporal-resolution geostationary HIR sounder data adds value for improved numerical weather prediction.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a ...This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a simultaneous resolution of three wind components andsatisfies both the minimal dual-equation system and the continuity equation. The main advantage ofthis method is that it can remove the potential drawback of an iterative solution of Cartesiandual-Doppler analysis techniques which is a major demerit when one retrieves the vertical velocityusing mass continuity equation with iterative method. The data pre-processing technology andinterpolation are also studied. This work developed a three-dimensional Cressman weighting functionto process the interpolation. In order to test the capability and advantage of this method, onenumerical experiment based on simulating dual-Doppler radar observations is designed. Firstly, wesynthesize the dual-Doppler radar radial velocity and reflectivity from the numerical model. Then,the three-dimensional wind components are retrieved from the radial velocity and reflectivity usingthis technique. The retrieved three-dimensional wind fields are found to be quite consisted withthose previously simulated wind fields. Mean difference, root-mean-square error, and relativedeviation are defined to test the precision of the method. These statistic errors reveal theaccuracy and the advantage of this method. The numerical experiment has definitely testified thatthis technique can be used to retrieve the three-dimensional wind fields from the radial velocityand reflectivity detected by the real dual-Doppler weather radar.展开更多
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel...A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
The application of radar–derived TREC wind to 3DVAR assimilation system of GRAPeS-3DVardeveloped by Chinese Academy of Meteorological Sciences is introduced. The resulting fundamental feature isestimated when radar T...The application of radar–derived TREC wind to 3DVAR assimilation system of GRAPeS-3DVardeveloped by Chinese Academy of Meteorological Sciences is introduced. The resulting fundamental feature isestimated when radar TREC wind is assimilated into GRAPeS-3DVar system. It was found that radar TRECwind has better potential of the application in GRAPeS-3DVar system and can effectively improve the analyzedresults. Moreover a numerical experiment is performed in which tropical cyclones make landfall and transform;it also showed that the predicted effect can be improved when the radar TREC wind is added into GRAPeS-3DVar system.展开更多
The development of minimally invasive surgery has transformed the management of gastrointestinal cancer.Notably,three-dimensional visualization systems have increased surgical precision.This editorial discusses a rece...The development of minimally invasive surgery has transformed the management of gastrointestinal cancer.Notably,three-dimensional visualization systems have increased surgical precision.This editorial discusses a recent study by Shen and Zhang,which compared the clinical applications of naked-eye threedimensional laparoscopic systems vs traditional optical systems in radical surgery for gastric and colorectal cancer.Both systems appeared to yield comparable surgical and oncological outcomes in terms of safety parameters,operating times,and quality of lymph node dissection.However,the spectacle-free system’s technical and logistical limitations hindered its effects on the surgical team’s overall competency.This editorial examines the authors’findings within the broader context of the evolution of oncologic laparoscopy,discusses the relevance of the results in light of the current literature,and proposes future research directions focused on multicenter validation,comprehensive ergonomic analysis,and technological advancements aimed at enhancing intraoperative collaboration.As technology continues to evolve,clinical implementation of new methods must be supported by robust scientific evidence and standardized criteria,to ensure tangible improvements in efficiency,safety,and oncologic outcomes.展开更多
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian res...On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
Objective:To analyze the diagnostic value of transvaginal three-dimensional ultrasound(3D-TVS)in evaluating endometrial receptivity(ER)for ovulation disorder infertility(ODI),and to investigate the impact of subendome...Objective:To analyze the diagnostic value of transvaginal three-dimensional ultrasound(3D-TVS)in evaluating endometrial receptivity(ER)for ovulation disorder infertility(ODI),and to investigate the impact of subendometrial endometrial vascular index(VI)and endometrial vascular flow index(VFI)levels on ODI.Methods:A total of 110 patients diagnosed with ODI admitted between January 2023 and June 2024 were selected.All patients underwent ovulation induction therapy,3D-TVS examination,and sex hormone testing.Based on pregnancy outcomes,patients were divided into a successful pregnancy group(73 cases)and an unsuccessful pregnancy group(37 cases).ER parameters,sex hormone levels,and endometrial blood flow patterns were compared between the two groups.Receiver operating characteristic(ROC)curves were plotted to evaluate the predictive value of ER for ODI.Results:The spiral artery peak systolic velocity(PSV),endometrial volume(EMV),endometrial flow index(FI),and VFI in the successful pregnancy group were significantly higher than those in the unsuccessful pregnancy group(p<0.05).No significant differences were observed in other ER parameters between the two groups(p>0.05).There was no significant difference in sex hormone levels between the two groups on the day of human chorionic gonadotropin(hCG)treatment(p>0.05).Among the endometrial blood flow classifications in the pregnant group,the proportion of Type II was lower than that in the nonpregnant group(p<0.05).The Receiver Operating Characteristic(ROC)curve demonstrated that the area under the curve(AUC)for Endometrial Volume(EMV)in predicting pregnancy after Ovarian Dysfunction Infertility(ODI)treatment was 0.854,with a sensitivity of 92.61%and a specificity of 71.75%.The AUC for Vascularization Index(VI)was 0.771,with a sensitivity of 52.18%and a specificity of 88.70%.The AUC for Vascularization Flow Index(VFI)of the endometrium was 0.887,with a sensitivity of 80.01%and a specificity of 69.20%.Conclusion:Three-dimensional transvaginal sonography(3D-TVS)assessment of endometrial receptivity(ER)can effectively detect ODI,and the levels of subendometrial VI and VFI demonstrate superior predictive performance for pregnancy outcomes in this condition,serving as commonly used predictive indicators for the disease.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510400)the National Natural Science Foundation of China(Grant Nos.41975054 and 41930967)the Special Fund for Forecasters of China Meteorological Administration(Grant No.CMAYBY2018-040)。
文摘In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.
文摘In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination of a numerical wind model in full 3D curvilinear coordinates, along with a high resolution boundary-fitted grid is used. Boundary conditions were obtained from ten years (2002-2012) of measured offshore wind data. Prevailing winds from April to September during that period of observations were selected for the simulations. For the cases analyzed, it was found that at the points of the study region (PSS, PSM, PM), wind speed increased about 10% to 20% of its offshore values, while inland they decreased about 86% to 96%. This spatial behavior agreed very well with the observed local winds. A coastal jet (CJ), 35 km long with speeds about 1.5 - 2 m/s, emanating from PSS was found for NNW winds. Modeled winds were also used to compute wind stresses, wind stress curl, and CUI fields. Wind stress values agreed very well to those reported in the literature. High values of wind stress curl, and CUI were found at the lee of the points (PSS, PSM, PM). Indirect estimations of sea surface currents were about 15 - 20 cm/s offshore and 5 - 10 cm/s at the coast.
基金supported by the National Natural Science Foundation of China(Grant No.U2142201)the Fengyun Application Pion eering Project(Grant No.FY-APP-ZX-2022.01)。
文摘Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high temporal resolution.Radiance measurements from the Geostationary Interferometric Infrared Sounder(GIIRS),obtained with 15-min temporal resolution during Typhoon Maria(2018) and 30-min temporal resolution during Typhoon Lekima(2019),were used to derive three-dimensional(3D) horizontal winds by tracking the motion of atmospheric moisture.This work focused on the impact of assimilation of 3D winds on typhoon analyses and forecasts using the operational NWP model of the China Meteorological Administration(CMA-MESO),and improved understanding of the potential benefits of assimilating dynamic information from geostationary sounder data with higher temporal resolution.The standard deviation of the observations minus simulations revealed that the accuracy of the derived 3D winds with 15-min resolution was higher than that of derived winds with 30-min resolution.Experiments showed that the assimilation system can effectively absorb the information of the derived 3D winds,and that dynamic information from clear-sky areas can be transferred to typhoon areas.In typhoon prediction,assimilation of the derived 3D winds had greatest influence on the typhoon track,and less influence on the maximum wind speed.Assimilation of the derived 3D winds reduced the average track error by 17.4% for Typhoon Maria(2018) and by 3.5% for Typhoon Lekima(2019) during their entire 36-h forecasts initiated at different times.Assimilation of GIIRS dynamic information can substantially improve forecasts of heavy precipitation by CMAMESO.Results indicate that the assimilation of dynamic information from high-temporal-resolution geostationary HIR sounder data adds value for improved numerical weather prediction.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金This work is supported by the National Key Basic Research and Development Project of China (2004CB418305), by the NationalNatural Science Foundation of China under Grant No. 40375006, and by the project of Ministry of Science and Technology ofChina (2002
文摘This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a simultaneous resolution of three wind components andsatisfies both the minimal dual-equation system and the continuity equation. The main advantage ofthis method is that it can remove the potential drawback of an iterative solution of Cartesiandual-Doppler analysis techniques which is a major demerit when one retrieves the vertical velocityusing mass continuity equation with iterative method. The data pre-processing technology andinterpolation are also studied. This work developed a three-dimensional Cressman weighting functionto process the interpolation. In order to test the capability and advantage of this method, onenumerical experiment based on simulating dual-Doppler radar observations is designed. Firstly, wesynthesize the dual-Doppler radar radial velocity and reflectivity from the numerical model. Then,the three-dimensional wind components are retrieved from the radial velocity and reflectivity usingthis technique. The retrieved three-dimensional wind fields are found to be quite consisted withthose previously simulated wind fields. Mean difference, root-mean-square error, and relativedeviation are defined to test the precision of the method. These statistic errors reveal theaccuracy and the advantage of this method. The numerical experiment has definitely testified thatthis technique can be used to retrieve the three-dimensional wind fields from the radial velocityand reflectivity detected by the real dual-Doppler weather radar.
文摘A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金National key science and technology planning project for the 10th five-year economic development period(2001BA607B)Key public-welfare research project of Ministry of Science and Technology (2001DIA20026)
文摘The application of radar–derived TREC wind to 3DVAR assimilation system of GRAPeS-3DVardeveloped by Chinese Academy of Meteorological Sciences is introduced. The resulting fundamental feature isestimated when radar TREC wind is assimilated into GRAPeS-3DVar system. It was found that radar TRECwind has better potential of the application in GRAPeS-3DVar system and can effectively improve the analyzedresults. Moreover a numerical experiment is performed in which tropical cyclones make landfall and transform;it also showed that the predicted effect can be improved when the radar TREC wind is added into GRAPeS-3DVar system.
文摘The development of minimally invasive surgery has transformed the management of gastrointestinal cancer.Notably,three-dimensional visualization systems have increased surgical precision.This editorial discusses a recent study by Shen and Zhang,which compared the clinical applications of naked-eye threedimensional laparoscopic systems vs traditional optical systems in radical surgery for gastric and colorectal cancer.Both systems appeared to yield comparable surgical and oncological outcomes in terms of safety parameters,operating times,and quality of lymph node dissection.However,the spectacle-free system’s technical and logistical limitations hindered its effects on the surgical team’s overall competency.This editorial examines the authors’findings within the broader context of the evolution of oncologic laparoscopy,discusses the relevance of the results in light of the current literature,and proposes future research directions focused on multicenter validation,comprehensive ergonomic analysis,and technological advancements aimed at enhancing intraoperative collaboration.As technology continues to evolve,clinical implementation of new methods must be supported by robust scientific evidence and standardized criteria,to ensure tangible improvements in efficiency,safety,and oncologic outcomes.
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
文摘Objective:To analyze the diagnostic value of transvaginal three-dimensional ultrasound(3D-TVS)in evaluating endometrial receptivity(ER)for ovulation disorder infertility(ODI),and to investigate the impact of subendometrial endometrial vascular index(VI)and endometrial vascular flow index(VFI)levels on ODI.Methods:A total of 110 patients diagnosed with ODI admitted between January 2023 and June 2024 were selected.All patients underwent ovulation induction therapy,3D-TVS examination,and sex hormone testing.Based on pregnancy outcomes,patients were divided into a successful pregnancy group(73 cases)and an unsuccessful pregnancy group(37 cases).ER parameters,sex hormone levels,and endometrial blood flow patterns were compared between the two groups.Receiver operating characteristic(ROC)curves were plotted to evaluate the predictive value of ER for ODI.Results:The spiral artery peak systolic velocity(PSV),endometrial volume(EMV),endometrial flow index(FI),and VFI in the successful pregnancy group were significantly higher than those in the unsuccessful pregnancy group(p<0.05).No significant differences were observed in other ER parameters between the two groups(p>0.05).There was no significant difference in sex hormone levels between the two groups on the day of human chorionic gonadotropin(hCG)treatment(p>0.05).Among the endometrial blood flow classifications in the pregnant group,the proportion of Type II was lower than that in the nonpregnant group(p<0.05).The Receiver Operating Characteristic(ROC)curve demonstrated that the area under the curve(AUC)for Endometrial Volume(EMV)in predicting pregnancy after Ovarian Dysfunction Infertility(ODI)treatment was 0.854,with a sensitivity of 92.61%and a specificity of 71.75%.The AUC for Vascularization Index(VI)was 0.771,with a sensitivity of 52.18%and a specificity of 88.70%.The AUC for Vascularization Flow Index(VFI)of the endometrium was 0.887,with a sensitivity of 80.01%and a specificity of 69.20%.Conclusion:Three-dimensional transvaginal sonography(3D-TVS)assessment of endometrial receptivity(ER)can effectively detect ODI,and the levels of subendometrial VI and VFI demonstrate superior predictive performance for pregnancy outcomes in this condition,serving as commonly used predictive indicators for the disease.