期刊文献+
共找到129,553篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of the Huanghe River mouth 被引量:4
1
作者 LIANG Bingchen ZHAO Hongping +1 位作者 LI Huajun WU Guoxiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第2期129-138,共10页
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface... A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too. 展开更多
关键词 Huanghe River mouth three-dimensional wave radiation stress COHERENS COHERENS-SED sediment spreading
在线阅读 下载PDF
Numerical Simulation of the Three-Dimensional Wave-Induced Currents on Unstructured Grid
2
作者 WANG Ping ZHANG Ning-chuan +1 位作者 YUAN Shuai CHEN Wei-bin 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期539-548,共10页
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical so... By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field. 展开更多
关键词 three-dimensional wave-induced current UNDERTOW unstructured grid radiation stress numerical simulation
在线阅读 下载PDF
A Three-dimensional Wave Activity Flux of Inertia–Gravity Waves and Its Application to a Rainstorm Event 被引量:2
3
作者 Lu LIU Lingkun RAN Shouting GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期206-218,共13页
A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the p... A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia–gravity waves and how the generation and dissipation of the inertia–gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen–Palm(EP) flux divergence is primarily concentrated at the height of 10–14 km, where the energy of the inertia–gravity waves propagates forward(eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12–14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm. 展开更多
关键词 three-dimensional EP FLUX HEAVY precipitation inertia–gravity waves
在线阅读 下载PDF
Numerical Simulation of Nonlinear Three-Dimensional Waves in Water of Arbitrary Varying Topography 被引量:10
4
作者 Hong, Guangwen Zhang, Hongsheng Feng, Weibing 《China Ocean Engineering》 SCIE EI 1998年第4期383-404,共22页
The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general condit... The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift are also given in this paper. The systematical tests of numerical simulation show that the theoretical models, the finite-difference algorithms and the boundary conditions can give good calculation results for the wave propagating in shallow and deep water with an arbitrary slope varying from gentle to steep. 展开更多
关键词 numerical simulation NONLINEAR 3D waves boundary conditions
在线阅读 下载PDF
The improved element-free Galerkin method forthree-dimensional wave equation 被引量:16
5
作者 Zan Zhang Dong-Ming Li +1 位作者 Yu-Min Cheng Kim Moew Liew 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期808-818,共11页
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w... The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study. 展开更多
关键词 Weighted orthogonal function Improved mov-ing least squares (IMLS) approximation. Improved element-free Galerkin (IEFG) method Penalty method Temporaldiscretization wave equation
在线阅读 下载PDF
Three-Dimensional Wave-Induced Current Model Equations and Radiation Stresses
6
作者 XIA Hua-yong 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期418-427,共10页
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinat... After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy’s wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model. 展开更多
关键词 sea surface wave wave-induced current radiation stress vertical wave momentum flux
在线阅读 下载PDF
Application of A Fully Nonlinear Higher-Order Element Method for Modelling Three-Dimensional Wave Entry of A Cone
7
作者 YUAN Dong-chuang CHENG Yong JI Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期814-827,共14页
Fully nonlinear water entry of a cone into waves with gravity effect has been analyzed based on a three-dimensional(3D)higher-order boundary method(HOBEM).The total velocity potential at the initial time is divided in... Fully nonlinear water entry of a cone into waves with gravity effect has been analyzed based on a three-dimensional(3D)higher-order boundary method(HOBEM).The total velocity potential at the initial time is divided into the incident and scattering components.In the subsequent time steps,the solution of the velocity potential is defined as a whole through instantaneous boundary conditions.Based on the image theory,a modified Green function is applied to establish the integral equations so that only half of the calculation domain is considered and the seabed can be excluded.The free surface elevation is tracked along a given azimuth plane in the polar coordinate system,while the horizontal motion of the water particle is updated by using a segment-spring analogy method,which redistributes nodes and maintains mesh connectivity according to linear stiffness.An auxiliary function is applied to solve the pressure distribution,instead of directly calculating time derivative of the velocity potential.The high accuracy of the present numerical method is achieved through a detailed convergence study and comparison with results in the literature.Simulations are emphatically performed to examine the effects of gravity,wave nonlinearity,entry location,and oblique entry. 展开更多
关键词 wave entry HOBEM time-domain simulation Green function segment-spring analogy method
在线阅读 下载PDF
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
8
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
Three-Dimensional Study on the Interaction Between Large-Scale Strongly Stratified Internal Solitary Waves and Moving Submersibles
9
作者 LI Zhuo-yue WANG Chao +6 位作者 DU Peng WEI Hong-zhuang XIE Zhong-liang YUAN Zhi-ming ZHANG Fan CHEN Xiao-peng HU Hai-bao 《China Ocean Engineering》 2025年第3期426-440,共15页
Internal solitary waves(ISWs) are a common phenomenon beneath the ocean surface and represent a significant environmental hazard that must be considered for the safe navigation of submersibles. A numerical simulation ... Internal solitary waves(ISWs) are a common phenomenon beneath the ocean surface and represent a significant environmental hazard that must be considered for the safe navigation of submersibles. A numerical simulation model for the interaction of solitary waves with submersibles at a large scale has been developed. The Miyata-ChoiCamassa(MCC) equation serves as the basis for generating ISWs. The impacts of the submergence depth, wave amplitude, and advancing velocity on the motion response and load characteristics of the submersible are examined in detail. This study elucidates the governing laws and mechanisms underlying the impact of ISWs on submersibles.The research findings indicate that shorter distances to the undisturbed surface, higher wave amplitudes, and fasteradvancing speeds result in greater effects on submersibles. For a submersible operating in the lower layer, both the alteration in density near the wave interface and the dynamic pressure induced by ISWs can reduce its lift, potentially resulting in a rapid descent. It is imperative to pay considerable attention to the impact of ISWs, as they have the potential to precipitate a loss of control of the submersible. 展开更多
关键词 internal solitary waves SUBMERSIBLE numerical simulation MCC motion characteristics
在线阅读 下载PDF
Three-Dimensional van Hove Singularities and Charge Density Wave Evolution in Kagome Lattice KV3Sb5
10
作者 Yu Huang Haiyang Ma +13 位作者 Wei Xia Zhicheng Jiang Wenchuan Jing Xiangqi Liu Jiayu Liu Yuming Shi Xun Ma Runfeng Zhang Jin-Feng Jia Jishan Liu Mao Ye Zhengtai Liu Yanfeng Guo Dawei Shen 《Chinese Physics Letters》 2025年第12期226-238,共13页
The kagome metals AV_(3)Sb_(5)(A=K,Rb,Cs)feature intertwined Dirac fermions,topological flat bands,and van Hove singularities(vHS)near the Fermi level,which give rise to a range of exotic,strongly correlated phenomena... The kagome metals AV_(3)Sb_(5)(A=K,Rb,Cs)feature intertwined Dirac fermions,topological flat bands,and van Hove singularities(vHS)near the Fermi level,which give rise to a range of exotic,strongly correlated phenomena such as charge density waves(CDW)and superconductivity.Although the vHS from V 3d states have been implicated in CDW formation,their three-dimensional nature and temperature evolution remain poorly understood.In this study,we used high-resolution angle-resolved photoemission spectroscopy and density functional theory to reveal pronounced out-of-plane dispersion of vHS and their temperature dependence in KV_(3)Sb_(5).The identified c-axis band folding and scattering channels were directly linked to the CDW order.These results demonstrate that the CDW transition in this family involves cooperative coupling between electron correlations and structural modulation along the c axis.This offers new insights into the interplay of topology,correlations,and lattice instabilities in kagome metals. 展开更多
关键词 kagome metals dirac fermionstopological flat bandsand van hove singularities vhs near charge density waves cdw three dimensional van hove singularities kv sb c axis band folding charge density wave evolution
原文传递
Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme 被引量:4
11
作者 蔡晓慧 刘洋 +4 位作者 任志明 王建民 陈志德 陈可洋 王成 《Applied Geophysics》 SCIE CSCD 2015年第3期409-420,469,共13页
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a... Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods. 展开更多
关键词 3D acoustic wave equation optimal finite-difference forward modeling reversetime migration
在线阅读 下载PDF
Three-dimensional P-wave velocity structure of the crust beneath Hainan Island and its adjacent regions,China 被引量:12
12
作者 李志雄 雷建设 +3 位作者 赵大鹏 武巴特尔 沈繁銮 丘学林 《地震学报》 CSCD 北大核心 2008年第5期441-448,共8页
Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions... Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper. 展开更多
关键词 三维速度 P波 地壳结构 海南岛
在线阅读 下载PDF
Experimental study of freak waves due to three-dimensional island terrain in random wave 被引量:3
13
作者 Li Zou Aimin Wang +2 位作者 Zhen Wang Yuguo Pei Xiaolong Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第6期92-99,共8页
An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains ... An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves. 展开更多
关键词 freak waves random wave SKEWNESS and KURTOSIS three-dimensional ISLAND TERRAIN
在线阅读 下载PDF
Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses 被引量:3
14
作者 Zhenni LI Yize WANG Yuesheng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第2期167-184,共18页
In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and ... In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics. 展开更多
关键词 nonlinear elastic wave metamaterial nonreciprocal transmission three-dimensional(3D)elastic wave initial stress
在线阅读 下载PDF
Reflection of three-dimensional plane waves at the free surface of a rotating triclinic half-space under the context of generalized thermoelasticity 被引量:2
15
作者 P.SINGH A.K.SINGH A.CHATTOPADHYAY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1363-1378,共16页
The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotro... The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study. 展开更多
关键词 REFLECTION energy ratio TRICLINIC THERMOELASTICITY rotation three-dimensional(3D)wave
在线阅读 下载PDF
Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries 被引量:18
16
作者 Liu Jingbo Tan Hui +2 位作者 Bao Xin Wang Dongyang Li Shutao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期747-758,共12页
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident... The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves. 展开更多
关键词 soil-structure dynamic interaction SEISMIC wave INPUT wave method EQUIVALENT INPUT SEISMIC loads SUBSTRUCTURE of artifi cial boundaries
在线阅读 下载PDF
Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures 被引量:8
17
作者 Liyuan Yu Qianqian Zhu +3 位作者 Zhiqiang Guo Yuhang Cheng Zirui Jia Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期129-139,共11页
In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisti... In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisting of MXene and transition metal oxides(TMOs)through efficient electrostatic self-assembly.This three-dimensional network structure has rich heterojunction structures,which can cause a large amount of interface polarization and conduction losses in incident electromagnetic waves.Hollow structures cause multiple reflections and scattering of electromagnetic waves,which is also an important reason for further increasing electromagnetic wave losses.When the doping ratio is 1:1,the system has the best impedance matching,the maximum effective absorption bandwidth(EAB max)can reach 5.12 GHz at 1.7 mm,and the minimum reflection loss(RL_(min))is-50.30 dB at 1.8 mm.This provides a reference for the subsequent formation of 2D-MXene materials into 3D materials. 展开更多
关键词 MXene three-dimensional frame Heterojunction structure Conduction loss Electromagnetic wave absorption
原文传递
Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source 被引量:10
18
作者 Yong Xu Wen-Cai Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期494-502,共9页
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ... A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation. 展开更多
关键词 Hydrodynamic interaction - wave loads ~Ship motions ~ Model test ~ three-dimensional translating-pulsating source ~ Underway replenishment
在线阅读 下载PDF
Three-Dimensional Model Test for Port Engineering with Multi-Directional Waves 被引量:1
19
作者 Yu Yuxiu Liu Shuxue Professor, State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology (DUT), Dalian 116024 Assistant Researcher, State Key Laboratory of Coastal and Offshore Engineering, DUT, Dalian 116024 《China Ocean Engineering》 SCIE EI 1994年第1期51-66,共16页
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te... -The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port. 展开更多
关键词 port engineering three-dimensional model test irregular waves multi-directional waves
在线阅读 下载PDF
Three-dimensional numerical simulation of wave interaction with perforated quasi-ellipse caisson 被引量:5
20
作者 Yong-xue WANG Xiao-zhong REN +1 位作者 Ping DONG Guo-yu WANG 《Water Science and Engineering》 EI CAS 2011年第1期46-60,共15页
The finite difference method and the volume of fluid (VOF) method were used to develop a three-dimensional numerical model to study wave interaction with a perforated caisson. The partial cell method was adopted to ... The finite difference method and the volume of fluid (VOF) method were used to develop a three-dimensional numerical model to study wave interaction with a perforated caisson. The partial cell method was adopted to solve this type of problem for the first time. The validity of the present model, with and without the presence of caisson structures, was examined by comparing the model results with experimental data. Then, the numerical model was used to investigate the effects of various wave and structure parameters on the wave force and wave runup of the perforated quasi-ellipse caisson. Compared with the solid quasi-ellipse caisson, the wave force on the perforated quasi-ellipse caisson is significantly reduced with increasing porosity of the perforated quasi-ellipse caisson. Furthermore, the perforated quasi-ellipse caisson can also reduce the wave runup, and it tends to decrease with the increase of the porosity of the perforated quasi-ellipse caisson and the relative wave height. 展开更多
关键词 VOF method partial cell method perforated quasi-ellipse caisson wave pressure wave force wave runup
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部