Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb...Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution an...Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose...Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens;the farmers plant fruit trees at the villages of provinces,that is a place which is influenced by the climate change.We went to the villages such as:Hiep Thanh village,Chau Thanh district,Long An province;Tan Phu village,Tan Phu Dong district,Tien Giang province;Tieu Can village,Tieu Can district,Tra Vinh province to observe the landscape(here 10 households for 1 village),and we took the sample to analyze.We knew the factors such as:drought,deficiency of water,salt water intrusion,flood.These factors influence the trees,assets,diseases,lives of the persons who stay here,and cause many damages.We compare many home-gardens having a climate change with the normal home-gardens.Thus,we propose the reasonable methods in order to fix the consequence and prevent the salt intrusion,flood,important damages…And we present some illustrations.展开更多
1 Trees don't create their own heat like mammals do,and they don't have warm shelters or fur coats.So how do they survive the deep freeze of winter?In a way they do hibernate(冬眠)like bears—but in trees this...1 Trees don't create their own heat like mammals do,and they don't have warm shelters or fur coats.So how do they survive the deep freeze of winter?In a way they do hibernate(冬眠)like bears—but in trees this is called dormancy and it's pretty amazing.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biolo...Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions.Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds.For some fruits,terpenoids are indispensable indicators for evaluating fruit quality and the economic value.Significant research progress has been made in terpenoids biosynthesis and regulation.In this review,we introduce the main terpenoids of fruit trees,emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway,and analyze TPS gene family identification and diversity in several fruit tree species.Moreover,the regulation of terpenes biosynthesis,including the molecular interaction mechanisms of environmental factors and hormone signaling pathways,are comprehensively described.Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis,providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to...A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.展开更多
Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesti...Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin...In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.展开更多
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems....Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.展开更多
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202070002)the Guangxi Science and Technology Major Program(Grant No.GuikeAA23023007-2)+1 种基金the Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project(2024CXTD19)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010303)。
文摘Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金financial support provided by the German Research Foundation,DFG,through grant number KL894/23-2 and NO 1444/1-2 as part of the Research Unit FOR2432/2the China Scholarship Council(CSC)that supports the first author with a Ph D scholarshipsupport provided by Indian partners at the Institute of Wood Science and Technology(IWST),Bengaluru。
文摘Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
文摘Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens;the farmers plant fruit trees at the villages of provinces,that is a place which is influenced by the climate change.We went to the villages such as:Hiep Thanh village,Chau Thanh district,Long An province;Tan Phu village,Tan Phu Dong district,Tien Giang province;Tieu Can village,Tieu Can district,Tra Vinh province to observe the landscape(here 10 households for 1 village),and we took the sample to analyze.We knew the factors such as:drought,deficiency of water,salt water intrusion,flood.These factors influence the trees,assets,diseases,lives of the persons who stay here,and cause many damages.We compare many home-gardens having a climate change with the normal home-gardens.Thus,we propose the reasonable methods in order to fix the consequence and prevent the salt intrusion,flood,important damages…And we present some illustrations.
文摘1 Trees don't create their own heat like mammals do,and they don't have warm shelters or fur coats.So how do they survive the deep freeze of winter?In a way they do hibernate(冬眠)like bears—but in trees this is called dormancy and it's pretty amazing.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the Major Innovation Project of Shandong Province(Grant No.2022CXGC010605)the National Natural Science Foundation of China(Grant No.32001990)the Key R&D Projects in Ningxia Autonomous Region(Grant No.2022BBF02014).
文摘Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions.Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds.For some fruits,terpenoids are indispensable indicators for evaluating fruit quality and the economic value.Significant research progress has been made in terpenoids biosynthesis and regulation.In this review,we introduce the main terpenoids of fruit trees,emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway,and analyze TPS gene family identification and diversity in several fruit tree species.Moreover,the regulation of terpenes biosynthesis,including the molecular interaction mechanisms of environmental factors and hormone signaling pathways,are comprehensively described.Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis,providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
文摘A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.
基金supported by LIFE project MYCORESTORE“Innovative use of mycological resources for resilient and productive Mediterranean forests threatened by climate change,LIFE18 CCA/ES/001110”projects VA178P23 and VA208P20 funded by JCYL(Spain),both co-financed by FEDER(UE)budget.
文摘Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
基金support of the Fundamental Research Funds for the Central Universities(No.E2ET0411X2).
文摘In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.
基金supported by the Central Guiding Local Science and Technology Development Fund of Shandong-Yellow River Basin(No.YDZX2023019)Shandong Natural Science Foundation of China(Nos.ZR2020QF067 and ZR2023QD073)+6 种基金the Discipline Cluster Research Project of Qingdao University“Deep mining and intelligent prediction of multimodal big data for marine ecological disasters”(No.20240604)sourced from the International Argo Program and the national programs that contribute to it(https://argo.ucsd.edu)the CMEMS(http://marine.copernicus.eu/)the CDS(https://cds.climate.copernicus.eu/)the EMODnet(https://www.emodnet-chemistry.eu/)obtained from the ERA5(https://www.ecmwf.int)derived from the Glob Colour Project(http://globcolour.info).
文摘Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.