With the development of new energy technology, there are increasing applications of grid-connected photovoltaic power generation system. However, there is little research on development of electromechanical model of l...With the development of new energy technology, there are increasing applications of grid-connected photovoltaic power generation system. However, there is little research on development of electromechanical model of large scale photovoltaic power station. The computational speed will be very slow if electromagnetic transient model is used for stability study because of its complexity. Therefore, study on electromechanical transient model of grid-connected photovoltaic power generation system is of great meaning. In this paper, electromagnetic transient model of photovoltaic power generation system is introduced first, and then a general electromechanical transient model is proposed. These two kinds of simulation model are set up in PSCAD. By comparing the simulation results of two models, the correctness and validity of the electromechanical transient model is verified. It provides reference model for efficient simulation and modeling of grid-connected photovoltaic power station in large-scale power systems.展开更多
The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic fi...The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.展开更多
The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromag...The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromagnetic(LOTEM)method employs a grounded-source transmitter,relying on a far-source observation mode and plane wave approximation for detection.However,LOTEM's far-source configuration weakens signal strength,and the plane wave approximation reduces precision,limiting effective detection depth to approximately 1000 m with a comprehensive error of about 15%.Recently,we have developed the grounded-source Short Offset Transient Electromagnetic(SOTEM)method,achieving greater detection depth and accuracy within the 500–2000 m depth range,a crucial interval for mineral resource exploration.This study explores the theoretical framework,instrumentation,data processing,and field applications of SOTEM.Based on a point charge element model,SOTEM accurately computes surface wave effects in EM field calculations,optimized for near-source observation.High-power,high-resolution,wide-bandwidth exploration equipment and an advanced three-dimensional hybrid inversion technique were also developed to enhance the method's effectiveness.Application of SOTEM to the deep exploration of the Zhou'an Ni-Cu-PGE deposit in Henan Province yielded high-resolution imaging of conductivity structures to about 2.5 km depth.These results,consistent with existing drill data,delineated mineralized ore bodies from surrounding formations,identified zones of mineralization potential,and suggested extensive resource prospects in the region.展开更多
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly redu...This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.展开更多
文摘With the development of new energy technology, there are increasing applications of grid-connected photovoltaic power generation system. However, there is little research on development of electromechanical model of large scale photovoltaic power station. The computational speed will be very slow if electromagnetic transient model is used for stability study because of its complexity. Therefore, study on electromechanical transient model of grid-connected photovoltaic power generation system is of great meaning. In this paper, electromagnetic transient model of photovoltaic power generation system is introduced first, and then a general electromechanical transient model is proposed. These two kinds of simulation model are set up in PSCAD. By comparing the simulation results of two models, the correctness and validity of the electromechanical transient model is verified. It provides reference model for efficient simulation and modeling of grid-connected photovoltaic power station in large-scale power systems.
文摘The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030106,42274192)the National Key Research and Development Program of China(Grant No.2022YFC2903505)。
文摘The Transient Electromagnetic(TEM)method is a critical geophysical technique for subsurface exploration of metal ore bodies,primarily utilizing either loop or grounded transmitters.The Long Offset Transient Electromagnetic(LOTEM)method employs a grounded-source transmitter,relying on a far-source observation mode and plane wave approximation for detection.However,LOTEM's far-source configuration weakens signal strength,and the plane wave approximation reduces precision,limiting effective detection depth to approximately 1000 m with a comprehensive error of about 15%.Recently,we have developed the grounded-source Short Offset Transient Electromagnetic(SOTEM)method,achieving greater detection depth and accuracy within the 500–2000 m depth range,a crucial interval for mineral resource exploration.This study explores the theoretical framework,instrumentation,data processing,and field applications of SOTEM.Based on a point charge element model,SOTEM accurately computes surface wave effects in EM field calculations,optimized for near-source observation.High-power,high-resolution,wide-bandwidth exploration equipment and an advanced three-dimensional hybrid inversion technique were also developed to enhance the method's effectiveness.Application of SOTEM to the deep exploration of the Zhou'an Ni-Cu-PGE deposit in Henan Province yielded high-resolution imaging of conductivity structures to about 2.5 km depth.These results,consistent with existing drill data,delineated mineralized ore bodies from surrounding formations,identified zones of mineralization potential,and suggested extensive resource prospects in the region.
基金supported in part by the Natural Sciences and Engineering Research Council(NSERC)of Canada,MITACS Accelerate,Manitoba Hydro,and by the University of Manitoba。
文摘This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.