The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and sub...Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials.展开更多
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub...Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.展开更多
Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstructi...Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.展开更多
Precise solutions for wheel-rail adhesion are important to the traction and braking of the high-speed trains under wet conditions.Current models predominantly rely on Hertzian contact theory assumptions.The present wo...Precise solutions for wheel-rail adhesion are important to the traction and braking of the high-speed trains under wet conditions.Current models predominantly rely on Hertzian contact theory assumptions.The present work proposes a novel non-Hertzian wheel-rail adhesion model to clarify the adhesion mechanisms under wet conditions.The non-Hertzian elastohydrodynamic lubrication(EHL)model was developed to obtain wheel-rail normal contact pressure under wet conditions with rough surfaces.The non-Hertzian extended creep force(ECF)model,which considers the effects of pressure and temperature on the elastic-plastic characteristics of the third body layer(3BL),was used to solve the tangential problems based on wheel-rail normal contact results.The numerical model was also validated by the high-speed wheel-rail adhesion laboratory tests.The wheel-rail rolling contact characteristics at different wheelset lateral displacements are investigated.The results reveal that the distributions of normal pressure,film thickness,tangential stress,and temperature show typical non-Hertzian characteristics.Finally,the effects of train speed and surface roughness on the adhesion characteristics are studied at different lateral displacements.The findings show that the present model can be used for the prediction of high-speed railway adhesion characteristics.展开更多
Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.D...Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.展开更多
High-temperature radiative cooling is essential for solar absorbers,as it mitigates efficiency degradation resulting from thermal accumulation.While porous structures have proven effective in enhancing absorber perfor...High-temperature radiative cooling is essential for solar absorbers,as it mitigates efficiency degradation resulting from thermal accumulation.While porous structures have proven effective in enhancing absorber performance,practical manufacturing processes and prolonged operational wear inevitably introduce surface roughness and structural deviations,which profoundly impact radiative properties.This study constructs a ZnS/Ag solar absorber model with surface roughness and employs the finite-difference time-domain method to investigate how characteristic length,surface roughness,porosity,pore shape factor,and taper influence its radiative properties in the 3μm-5μm band at 750 K.Results show optimal absorption at a 1μm characteristic length with a 36.72%improvement compared to the model with l=0.25μm,increased absorption with higher porosity with a 69.29%improvement at 0.6 compared to the non-porous structure,lower circularity with a 19.03%improvement for C=0.89 compared to C=1.00,while surface roughness with a 61.24%improvement at RMS=0.031 compared to RMS=0 and taper with a 38.29%improvement at β=20°compared to β=0°also exert significant effects.This work provides engineering design guidelines for high-efficiency,low-cost absorbers.展开更多
Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dim...Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Car...Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.展开更多
For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al ...For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al metal matrix composites are widely researched due to its attractive properties such as low density,good wear resistance and improved strength.It is of great significance to investigate the machined surface roughness,residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material.In this study,the surface roughness including two-dimensional and three-dimensional roughness,residual stress and fatigue life of milling in-situ TiB_2/7050 Al metal matrix composites were analyzed.It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites.The cutting temperature played a great role on the residual stress.However,the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270°C.An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins,river pattern veins and wave shaped veins in fracture surface.展开更多
A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and roug...A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformat...Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformation behavior was examined. The results show that the yield strength of the BMG is hardly affected while the compressive plasticity increases from 2.3% to 4.5% with decreasing the surface roughness. Observation of the fractured samples under a scanning electron microscope indicates that the rise in plasticity is accompanied with an increase in shear band density. The results suggest that it is necessary to reduce the surface roughness of BMGs for achieving a large plasticity.展开更多
Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF she...Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.展开更多
Using a nonlinear time varying tyre model, this paper simulatively analyzes the influence of road surface roughness amplitude and road spatial frequency on automobile ground adhesion ability. The result shows that wi...Using a nonlinear time varying tyre model, this paper simulatively analyzes the influence of road surface roughness amplitude and road spatial frequency on automobile ground adhesion ability. The result shows that with the increase of road surface roughness, the tyre adhesion ability declines, and the automotive braking distance increases. Moreover, the reliability of the nonlinear time varying tyre model in reflecting the influence of the road surface roughness is validated. It is testified that this model is an effective dynamic one in the simulation of automotive braking performance on uneven road.展开更多
For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simul...The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are made with OpenGL tool. The choice of grinding wheels, the forecast of ground surface quality and some simulation results can be realized by interactively inputting grinding parameters. The paper applies virtual reality technology to grinding process,makes the model of virtual grinding wheel and simulates the grinding process. The roughness of ground surface is showed in three-dimensional images, and therefore the grinding technology is studied. Computer simulation can not only be used as a shortcut to analyze and research the grinding process, but also increase the research scope and content. The virtual reality technology used in the paper is an advanced visualized simulation with interaction. The surface roughness Ra on simulated ground workpiece can be calculated by the arithmetic average of contour warp absolute value in sampling length of simulated ground workpiece. The parameters of virtual wheel and simulated grinding process can be changed by interaction input, so the simulated results in the desired grinding condition are gained. The effect of each parameter to ground surface can be analyzed by comparing the grinding results in different condition.展开更多
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and the...As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.展开更多
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.
基金supported by the National Key Research and Development Program of China(2022YFB3605902)the National Natural Science Foundation of China(52375411,52293402)。
文摘Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials.
基金supported by H2020-MSCA-RISE-778104–ThermaSMART,Royal Society(IEC\NSFC\211210)doctoral degree scholarship of China Scholarship Council(CSC).
文摘Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2902103National Natural Science Foundation of China,Grant/Award Number:51934001Fundamental Research Funds for the Central Universities,Grant/Award Number:2023JCCXLJ02。
文摘Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.
基金Project(52372391)supported by the National Natural Science Foundation of China。
文摘Precise solutions for wheel-rail adhesion are important to the traction and braking of the high-speed trains under wet conditions.Current models predominantly rely on Hertzian contact theory assumptions.The present work proposes a novel non-Hertzian wheel-rail adhesion model to clarify the adhesion mechanisms under wet conditions.The non-Hertzian elastohydrodynamic lubrication(EHL)model was developed to obtain wheel-rail normal contact pressure under wet conditions with rough surfaces.The non-Hertzian extended creep force(ECF)model,which considers the effects of pressure and temperature on the elastic-plastic characteristics of the third body layer(3BL),was used to solve the tangential problems based on wheel-rail normal contact results.The numerical model was also validated by the high-speed wheel-rail adhesion laboratory tests.The wheel-rail rolling contact characteristics at different wheelset lateral displacements are investigated.The results reveal that the distributions of normal pressure,film thickness,tangential stress,and temperature show typical non-Hertzian characteristics.Finally,the effects of train speed and surface roughness on the adhesion characteristics are studied at different lateral displacements.The findings show that the present model can be used for the prediction of high-speed railway adhesion characteristics.
基金the financial supports from National Key R&D Program of China(No.2022YFB3403301)the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.52311530080)。
文摘Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.
基金funded by the National Natural Science Foundation of China,grant number 52406102,received by Haiyan YuShandong Provincial Natural Science Foundation,grant number ZR2023QE258,received by Haiyan Yu.
文摘High-temperature radiative cooling is essential for solar absorbers,as it mitigates efficiency degradation resulting from thermal accumulation.While porous structures have proven effective in enhancing absorber performance,practical manufacturing processes and prolonged operational wear inevitably introduce surface roughness and structural deviations,which profoundly impact radiative properties.This study constructs a ZnS/Ag solar absorber model with surface roughness and employs the finite-difference time-domain method to investigate how characteristic length,surface roughness,porosity,pore shape factor,and taper influence its radiative properties in the 3μm-5μm band at 750 K.Results show optimal absorption at a 1μm characteristic length with a 36.72%improvement compared to the model with l=0.25μm,increased absorption with higher porosity with a 69.29%improvement at 0.6 compared to the non-porous structure,lower circularity with a 19.03%improvement for C=0.89 compared to C=1.00,while surface roughness with a 61.24%improvement at RMS=0.031 compared to RMS=0 and taper with a 38.29%improvement at β=20°compared to β=0°also exert significant effects.This work provides engineering design guidelines for high-efficiency,low-cost absorbers.
基金supported in part by the Science and Technology Innovation Program of Hunan Province(2024RC1007)the Young Scientists Fund of the National Natural Science Foundation of China(62303491)+2 种基金the Major Program of Xiangjiang Laboratory(22XJ01005)the Young Scientists Fund of the National Natural Science Foundation of China(62203473)Central South University Post-Graduate Independent Exploration and Innovation Project(2024ZZTS0451).
文摘Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308071,61601355,and 61571355)the Natural Science Foundation of Shaanxi Province,China(Grant No.2016JM6011)
文摘Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.
基金National Natural Science Foundation of China(No.51775443)National Science and Technology Major Project of China(No.2017-VII-00150111)。
文摘For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al metal matrix composites are widely researched due to its attractive properties such as low density,good wear resistance and improved strength.It is of great significance to investigate the machined surface roughness,residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material.In this study,the surface roughness including two-dimensional and three-dimensional roughness,residual stress and fatigue life of milling in-situ TiB_2/7050 Al metal matrix composites were analyzed.It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites.The cutting temperature played a great role on the residual stress.However,the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270°C.An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins,river pattern veins and wave shaped veins in fracture surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.61771407)
文摘A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金Projects (50771064,50831003) supported by the National Natural Science Foundation of ChinaProject (10PJ1405900) supported by Shanghai Pujiang Program,China
文摘Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformation behavior was examined. The results show that the yield strength of the BMG is hardly affected while the compressive plasticity increases from 2.3% to 4.5% with decreasing the surface roughness. Observation of the fractured samples under a scanning electron microscope indicates that the rise in plasticity is accompanied with an increase in shear band density. The results suggest that it is necessary to reduce the surface roughness of BMGs for achieving a large plasticity.
文摘Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.
文摘Using a nonlinear time varying tyre model, this paper simulatively analyzes the influence of road surface roughness amplitude and road spatial frequency on automobile ground adhesion ability. The result shows that with the increase of road surface roughness, the tyre adhesion ability declines, and the automotive braking distance increases. Moreover, the reliability of the nonlinear time varying tyre model in reflecting the influence of the road surface roughness is validated. It is testified that this model is an effective dynamic one in the simulation of automotive braking performance on uneven road.
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
文摘The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are made with OpenGL tool. The choice of grinding wheels, the forecast of ground surface quality and some simulation results can be realized by interactively inputting grinding parameters. The paper applies virtual reality technology to grinding process,makes the model of virtual grinding wheel and simulates the grinding process. The roughness of ground surface is showed in three-dimensional images, and therefore the grinding technology is studied. Computer simulation can not only be used as a shortcut to analyze and research the grinding process, but also increase the research scope and content. The virtual reality technology used in the paper is an advanced visualized simulation with interaction. The surface roughness Ra on simulated ground workpiece can be calculated by the arithmetic average of contour warp absolute value in sampling length of simulated ground workpiece. The parameters of virtual wheel and simulated grinding process can be changed by interaction input, so the simulated results in the desired grinding condition are gained. The effect of each parameter to ground surface can be analyzed by comparing the grinding results in different condition.
基金supported by the National Natural Science Foundation of China (41271288, 41371273)
文摘As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.