期刊文献+
共找到12,877篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional line-of-sight-angle-constrained leader-following cooperative interception guidance law with prespecified impact time 被引量:1
1
作者 Hao YOU Xinlong CHANG Jiufen ZHAO 《Chinese Journal of Aeronautics》 2025年第1期491-506,共16页
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea... To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law. 展开更多
关键词 three-dimensional cooperative interception Leader-following missiles Prespecified impact time LOS-angle-constrained Fixed-time stability Global integral sliding mode
原文传递
Three-dimensional models:from cell culture to Patient-Derived Organoid and its application to future liposarcoma research
2
作者 SAYUMI TAHARA SYDNEY RENTSCH +4 位作者 FERNANDA COSTAS CASAL DE FARIA PATRICIA SARCHET ROMA KARNA FEDERICA CALORE RAPHAEL E.POLLOCK 《Oncology Research》 SCIE 2025年第1期1-13,共13页
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ... Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma. 展开更多
关键词 Cell culture LIPOSARCOMA Patient-Derived Organoid(PDO) SPHEROID three-dimensional(3D)cell culture
暂未订购
Optimization Design and Numerical Evaluation of Waterjet Steering and Reversing Gear
3
作者 GONG Jie WU Zhong-wan +2 位作者 SUN Yi-dan DING Jiang-ming SU Jun-jun 《China Ocean Engineering》 2025年第2期268-279,共12页
This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SR... This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SRG’s performance evaluation stems mainly from the effect of the free surface,the varying sailing speeds of the ship,and its performance while functioning at the stern of the waterjet-propelled vessel.Parameters such as the length,width,and height of the steering gear,as well as the inclination,width,and curvature of the reversing gear,significantly influence the SRG.Although the free surface has a great impact on the force of the SRG,its performance trend remains unaffected.When the SRG operates at the stern of the ship,the optimized scheme’s lateral force improves by an average of 8.08%for sailing with a rudder angle condition and an average of 45.69%for reversing sailing with a rudder angle condition.The longitudinal force of the optimized scheme improves by more than 23%when sailing without a rudder angle condition and by an average of 31.75%when sailing with a reversed rudder angle condition.Additionally,the speed of the rotor has a minimal effect on the lateral force and a significant effect on the longitudinal force. 展开更多
关键词 waterjet steering and reversing gear HYDRODYNAMICS OPTIMIZATION
在线阅读 下载PDF
Dynamic terahertz multi-channel beam steering with dual-frequency multiplexing based on magneto-optical metasurfaces
4
作者 Dan Zhao Fei Fan +5 位作者 Hao Wang Pengxuan Li Zhen Xu Jining Li Yunyun Ji Shengjiang Chang 《Advanced Photonics Nexus》 2025年第3期149-157,共9页
With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag... With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication. 展开更多
关键词 TERAHERTZ MULTI-CHANNEL DUAL-FREQUENCY nonreciprocal transmission beam steering dynamics
在线阅读 下载PDF
Enhancing entanglement and steering in a hybrid atom–optomechanical system via Duffing nonlinearity
5
作者 Ling-Hui Dong Xiao-Jie Wu +1 位作者 Cheng-Hua Bai Shao-Xiong Wu 《Chinese Physics B》 2025年第2期124-131,共8页
We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system... We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity,leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies. 展开更多
关键词 quantum entanglement EPR steering optomechanical system Duffing nonlinearity
原文传递
Investigation into the degradation of 2,4,6-trichlorophenol utilizing a three-dimensional electrocatalytic reactor filled with fluorine-doped copper-carbon particle electrodes
6
作者 Hongrui Zhang Wenyu Huang +4 位作者 Hainong Song Hanhui Yan Jia Zhang Fang Zhong Huilan Li 《Journal of Environmental Sciences》 2025年第9期701-719,共19页
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata... The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP. 展开更多
关键词 2 4 6-TRICHLOROPHENOL Heterogeneous Fenton-like process three-dimensional electrocatalytic reactor three-dimensional particle electrode system Fluorine-doped copper-carbon particle electrodes
原文传递
Steering APEC Toward Shared Growth
7
作者 《China Today》 2025年第12期16-19,共4页
President Xi Jinping’s APEC trip underscores China’s resolve to advance openness,cooperation,and shared prosperity across the Asia-Pacific region.FROM October 30 to November 1,2025,Chinese President Xi Jinping trave... President Xi Jinping’s APEC trip underscores China’s resolve to advance openness,cooperation,and shared prosperity across the Asia-Pacific region.FROM October 30 to November 1,2025,Chinese President Xi Jinping traveled to the Republic of Korea(ROK)to attend the 32nd Asia-Pacific Economic Cooperation(APEC)Economic Leaders’Meeting and also pay a state visit to the country. 展开更多
关键词 APEC china state visit OPENNESS steering xi jinping shared growth president
在线阅读 下载PDF
Research on Steering Mode Switching for Autonomous Vehicles
8
作者 WANG Huifeng ZHAO Jiarui +6 位作者 HE Yuxie LIANG Yaru WAN Yikun SONG Shangzhen GAO Rong HUANG He WANG Gaipeng 《Wuhan University Journal of Natural Sciences》 2025年第4期355-366,共12页
In order to enhance the safety of autonomous driving vehicles,this work focuses on the issue of automatic-to-manual mode transition in the column electric power steering(C-EPS)system.First,we utilized an extended stat... In order to enhance the safety of autonomous driving vehicles,this work focuses on the issue of automatic-to-manual mode transition in the column electric power steering(C-EPS)system.First,we utilized an extended state observer to estimate the driver's steering torque and designed a steering mode transition unit.Second,we validated the mode switching function through an experimental platform.The results indicated that when using the extended state observer for torque estimation,the steering wheel angle and lower input angle errors were approximately±0.5%.The input and observed torque curves were closely aligned,demonstrating excellent tracking capability of the system.In addition,by adopting a steering mode conversion unit,the switch from autonomous control to manual control has been obtained,achieving a smooth and minimal change in steering wheel angle without significant bumps.The experimental results demonstrate that the designed mode switching strategy has the advantages of speed and smoothness,and has strong practical value. 展开更多
关键词 AUTOPILOT human-machine co-driving extended state observer steering mode switching
原文传递
A Review of Three-Dimensional Research on Urban Recreation Space Based on CiteSpace
9
作者 LIU Yongli 《Journal of Landscape Research》 2025年第1期30-34,共5页
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t... In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”. 展开更多
关键词 Compact city Urban recreation space three-dimensional CITESPACE
在线阅读 下载PDF
Multi-Objective Parallel Human-machine Steering Coordination Control Strategy of Intelligent Vehicles Path Tracking Based on Deep Reinforcement Learning
10
作者 Hongbo Wang Lizhao Feng +2 位作者 Shaohua Li Wuwei Chen Juntao Zhou 《Chinese Journal of Mechanical Engineering》 2025年第3期393-411,共19页
In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordinat... In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance. 展开更多
关键词 Path tracking Human-machine co-driving Parallel steering coordination Deep reinforcement learning
在线阅读 下载PDF
Quantum manipulation of asymmetric Einstein–Podolsky–Rosen steering in controllable dynamical Casimir arrays
11
作者 Ruinian Li Yumei Long Xue Zhang 《Chinese Physics B》 2025年第2期149-163,共15页
We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an a... We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives. 展开更多
关键词 dynamical Casimir effect EPR steering monogamy relation giant atoms coupled resonator waveguides
原文传递
Resection of a ganglioneuroma encasing major blood vessels using three-dimensional laparoscopy combined with organ suspension:A case report
12
作者 Guo-Zhen Wu Shen-Zhe Fang +1 位作者 Shi-An Yu Min Yu 《World Journal of Gastrointestinal Surgery》 2025年第8期467-475,共9页
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major... BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels. 展开更多
关键词 Ganglioneuromas Retroperitoneal three-dimensional laparoscopy Organ suspension Case report
暂未订购
Reconfigurable Three-Dimensional Thermal Dome
13
作者 Yuhong Zhou Fubao Yang +5 位作者 Liujun Xu Pengfei Zhuang Dong Wang Xiaoping Ouyang Ying Li Jiping Huang 《Engineering》 2025年第3期236-244,共9页
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t... Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields. 展开更多
关键词 Thermal domes Reconfigurable metamaterials three-dimensional invisibility
在线阅读 下载PDF
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
14
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
Global Mapping of Three-Dimensional Urban Structures Reveals Escalating Utilization in the Vertical Dimension and Pronounced Building Space Inequality
15
作者 Xiaoping Liu Xinxin Wu +6 位作者 Xuecao Li Xiaocong Xu Weilin Liao Limin Jiao Zhenzhong Zeng Guangzhao Chen Xia Li 《Engineering》 2025年第4期86-99,共14页
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan... Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies. 展开更多
关键词 three-dimensional Global mapping Building volume Building height Building space inequality
在线阅读 下载PDF
Three-dimensional internal multiple elimination in complex structures using Marchenko autofocusing theory
16
作者 Pei-Nan Bao Ying Shi +2 位作者 Xin-Min Shang Hong-Xian Liang Wei-Hong Wang 《Petroleum Science》 2025年第1期222-233,共12页
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ... Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value. 展开更多
关键词 Marchenko Internal multiple elimination Autofocusing three-dimensional seismic data
原文传递
Three-dimensional reconstruction under computed tomography and myopectineal orifice measurement under laparoscopy for quality control of inguinal hernia treatment
17
作者 Lei Zhang Jing Chen +7 位作者 Yu-Ying Zhang Lei Liu Han-Dan Wang Ya-Fei Zhang Jun Sheng Qiu-Shi Hu Ming-Liang Liu Yi-Lin Yuan 《World Journal of Gastrointestinal Endoscopy》 2025年第3期50-59,共10页
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne... BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size. 展开更多
关键词 HERNIA INGUINAL Myopectineal orifice three-dimensional reconstruction Computed tomography Inguinal hernia
暂未订购
Daily Evolution of Three-Dimensional Structure of a Subsurface Anticyclonic Eddy and Eddy-Induced Swirl Transport in the Canada Basin
18
作者 XU Fan LI Haiyan +3 位作者 WANG Ru WEN Zhiqiang YANG Kun ZHANG Menghao 《Journal of Ocean University of China》 2025年第3期545-556,共12页
In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin... In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region. 展开更多
关键词 Beaufort Gyre mesoscale eddy three-dimensional structure swirl transport baroclinic instability
在线阅读 下载PDF
Reconstruction of the three-dimensional dissolved oxygen and its spatio-temporal variations in the Mediterranean Sea using machine learning
19
作者 Guangsheng Liu Xiang Yu +3 位作者 Jiahua Zhang Xiaopeng Wang Nuo Xu Shawkat Ali 《Journal of Environmental Sciences》 2025年第11期710-728,共19页
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.... Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions. 展开更多
关键词 three-dimensional structure Dissolved oxygen Remote sensing Biogeochemical argo Mediterranean sea LightGBM
原文传递
Revolutionizing hepatobiliary surgery:Impact of three-dimensional imaging and virtual surgical planning on precision,complications,and patient outcomes
20
作者 Himanshu Agrawal Himanshu Tanwar Nikhil Gupta 《Artificial Intelligence in Gastroenterology》 2025年第1期39-51,共13页
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonanc... BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy. 展开更多
关键词 three-dimensional imaging Virtual surgical planning Hepatobiliary surgery Surgical precision Preoperative planning
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部