期刊文献+
共找到9,268篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
1
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves 被引量:1
2
作者 Xiao Chen Gang Dong Hua Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期316-326,共11页
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step ch... The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter can reasonably character the features of flame interface development induced by the multiple shock waves. 展开更多
关键词 shock wave Flame interface RM instability Chemical reaction Vortex structure
在线阅读 下载PDF
Experimental and numerical simulation of the attenuation effect of blast shock waves in tunnels at different altitudes 被引量:1
3
作者 Changjiang Liu Hujun Li +3 位作者 Zhen Wang Yong He Guokai Zhang Mingyang Wang 《Defence Technology(防务技术)》 2025年第1期120-141,共22页
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ... Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes. 展开更多
关键词 shock wave propagation TUNNEL Altitude effect Peak overpressure shock waves velocity Engineering safety
在线阅读 下载PDF
Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures 被引量:8
4
作者 Liyuan Yu Qianqian Zhu +3 位作者 Zhiqiang Guo Yuhang Cheng Zirui Jia Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期129-139,共11页
In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisti... In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisting of MXene and transition metal oxides(TMOs)through efficient electrostatic self-assembly.This three-dimensional network structure has rich heterojunction structures,which can cause a large amount of interface polarization and conduction losses in incident electromagnetic waves.Hollow structures cause multiple reflections and scattering of electromagnetic waves,which is also an important reason for further increasing electromagnetic wave losses.When the doping ratio is 1:1,the system has the best impedance matching,the maximum effective absorption bandwidth(EAB max)can reach 5.12 GHz at 1.7 mm,and the minimum reflection loss(RL_(min))is-50.30 dB at 1.8 mm.This provides a reference for the subsequent formation of 2D-MXene materials into 3D materials. 展开更多
关键词 MXene three-dimensional frame Heterojunction structure Conduction loss Electromagnetic wave absorption
原文传递
Radiation investigation behind 4.7 km/s shock waves with nitrogen using a square section shock tube 被引量:1
5
作者 Senhao Zhang Yuzhe Zhang +6 位作者 Yixin Xu Tianrui Bai Kai Luo Renjie Li Qiu Wang Xin Lin Fei Li 《Acta Mechanica Sinica》 2025年第3期13-22,共10页
The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium rad... The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy. 展开更多
关键词 Nitrogen radiation NON-EQUILIBRIUM Spectral measurement shock waves shock tube
原文传递
Experimental study of freak waves due to three-dimensional island terrain in random wave 被引量:3
6
作者 Li Zou Aimin Wang +2 位作者 Zhen Wang Yuguo Pei Xiaolong Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第6期92-99,共8页
An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains ... An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves. 展开更多
关键词 freak waves random wave SKEWNESS and KURTOSIS three-dimensional ISLAND TERRAIN
在线阅读 下载PDF
Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of the Huanghe River mouth 被引量:4
7
作者 LIANG Bingchen ZHAO Hongping +1 位作者 LI Huajun WU Guoxiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第2期129-138,共10页
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface... A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too. 展开更多
关键词 Huanghe River mouth three-dimensional wave radiation stress COHERENS COHERENS-SED sediment spreading
在线阅读 下载PDF
Role of variation coefficient of stone density in determining success of shock wave lithotripsy in urinary calculi 被引量:1
8
作者 Nadeem Iqbal Aisha Hasan +2 位作者 Sajid Iqbal Sadaf Noureen Saeed Akhter 《World Journal of Nephrology》 2025年第1期110-118,共9页
BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free r... BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes. 展开更多
关键词 Computed tomography shock wave lithotripsy Stone heterogeneity Variation coefficient of stone density Kidney stones
暂未订购
Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses 被引量:3
9
作者 Zhenni LI Yize WANG Yuesheng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第2期167-184,共18页
In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and ... In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics. 展开更多
关键词 nonlinear elastic wave metamaterial nonreciprocal transmission three-dimensional(3D)elastic wave initial stress
在线阅读 下载PDF
A Three-dimensional Wave Activity Flux of Inertia–Gravity Waves and Its Application to a Rainstorm Event 被引量:2
10
作者 Lu LIU Lingkun RAN Shouting GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期206-218,共13页
A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the p... A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia–gravity waves and how the generation and dissipation of the inertia–gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen–Palm(EP) flux divergence is primarily concentrated at the height of 10–14 km, where the energy of the inertia–gravity waves propagates forward(eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12–14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm. 展开更多
关键词 three-dimensional EP FLUX HEAVY precipitation inertia–gravity waves
在线阅读 下载PDF
Reflection of three-dimensional plane waves at the free surface of a rotating triclinic half-space under the context of generalized thermoelasticity 被引量:2
11
作者 P.SINGH A.K.SINGH A.CHATTOPADHYAY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1363-1378,共16页
The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotro... The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study. 展开更多
关键词 REFLECTION energy ratio TRICLINIC THERMOELASTICITY rotation three-dimensional(3D)wave
在线阅读 下载PDF
STABILIZATION EFFECT OF FRICTIONS FOR TRANSONIC SHOCKS IN STEADY COMPRESSIBLE EULER FLOWS PASSING THREE-DIMENSIONAL DUCTS 被引量:2
12
作者 Hairong YUAN Qin ZHAO 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期470-502,共33页
Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock s... Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations. 展开更多
关键词 Stability transonic shocks Fanno flow three-dimensional Euler system FRICTIONS decomposition nonlocal elliptic problem Venttsel boundary condition elliptic-hyperbolic mixed-composite tpe
在线阅读 下载PDF
Three-Dimensional Model Test for Port Engineering with Multi-Directional Waves 被引量:1
13
作者 Yu Yuxiu Liu Shuxue Professor, State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology (DUT), Dalian 116024 Assistant Researcher, State Key Laboratory of Coastal and Offshore Engineering, DUT, Dalian 116024 《China Ocean Engineering》 SCIE EI 1994年第1期51-66,共16页
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te... -The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port. 展开更多
关键词 port engineering three-dimensional model test irregular waves multi-directional waves
在线阅读 下载PDF
Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source 被引量:10
14
作者 Yong Xu Wen-Cai Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期494-502,共9页
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ... A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation. 展开更多
关键词 Hydrodynamic interaction - wave loads ~Ship motions ~ Model test ~ three-dimensional translating-pulsating source ~ Underway replenishment
在线阅读 下载PDF
Theoretical researches on three-dimensional coda wave scattering problem 被引量:1
15
作者 聂永安 曾健 冯德益 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期83-87,共5页
Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the as... Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the assumptionof three-dimensional medium with numerous, statistically isotropic and uniformly distributed scatterers, we obtain the analytic form of power spectrum of coda waves for single scattering and the integral form of power spectrum of coda waves for multiple scattering. 展开更多
关键词 coda wave three-dimensional model
在线阅读 下载PDF
Simulation of Wave Impact on Three-Dimensional Horizontal Plate Based on SPH Method 被引量:1
16
作者 郑坤 孙家文 +2 位作者 陈昌平 孙昭晨 任喜峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期701-709,共9页
An improved three-dimensional incompressible smooth particle hydrodynamics(ISPH)model is developed to simulate the impact of regular wave on a horizontal plate.The improvement is the employment of a corrective functio... An improved three-dimensional incompressible smooth particle hydrodynamics(ISPH)model is developed to simulate the impact of regular wave on a horizontal plate.The improvement is the employment of a corrective function to enhance angular momentum conservation in a particle-based calculation.And a new estimation method is proposed to predict the pressure on the horizontal plate.Then,the model simulates the variation characteristics of impact pressures generated by regular wave slamming.The main features of velocity field and pressure field near the plate are presented.The present numerical model can be used to study wave impact load on the horizontal plate. 展开更多
关键词 incompressible smoothed particle hydrodynamics(ISPH) wave impact three-dimensional horizontal plate
在线阅读 下载PDF
Generation of spherically converging shock wave based on shock wave lens
17
作者 Qi-Guang He Dun Wu +3 位作者 Yuying Yu Hang Zhang Qiang Wu Jianbo Hu 《Matter and Radiation at Extremes》 2025年第6期75-85,共11页
The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide ... The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves.This work proposes a novel approach for actively controlling intense shock waves in solids,inspired by the principles of optical and explosive lenses.Specifically,by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix,we prove the feasibility of transforming a planar shock into a spherically converging shock.This is based on oblique shock theory,according to which shock waves pass through an oblique interface and then undergo deflection.Both experimental and simulation results demonstrate that,as expected,the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure.Thus,this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids.It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies. 展开更多
关键词 designing shock wave convex lens controlling intense shock waves impact dynamicseffective optical explosive lensesspecificallyby enhance damage shock wave lens intense shock wavesthis manipulation intense shock waves
在线阅读 下载PDF
Study on adaptive mesh method in the problem of underwater shock waves near water surface
18
作者 Fang Wang Xinpeng Yuan Jianzhu An 《Chinese Physics B》 2025年第6期385-399,共15页
This paper focuses on the application of the adaptive mesh method in the study of underwater shock waves near the water surface.By integrating theoretical analysis with a five-equation model under axisymmetric coordin... This paper focuses on the application of the adaptive mesh method in the study of underwater shock waves near the water surface.By integrating theoretical analysis with a five-equation model under axisymmetric coordinates,we developed an optimized computational framework for multi-material fluid simulations.The moving mesh method(r-method)is used to accurately capture complex underwater shock wave systems.Multiple numerical experiments are conducted,including deep-water explosions,near-surface explosions for both spherical charge and cylindrical charge,and regular–irregular reflection interface calculations.The results show that compared to the fixed mesh method,the adaptive mesh method provides results closer to the theoretical values and achieves local high-resolution computation of multi-material fluids.By adjusting the adaptive function,different mesh refinement effects can be obtained.This method also has certain advantages in calculating the regular–irregular reflection interface in underwater explosions.This study establishes a validated computational framework for underwater explosion research,enhancing the predictive accuracy for underwater shock wave propagation in engineering assessments and providing new insights into the fundamental physics of multi-material explosion phenomena. 展开更多
关键词 adaptive mesh shock wave five equations UNDERWATER
原文传递
An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems 被引量:1
19
作者 Ze-Zhong Zhang Wen-Yu Luo Ren-He Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期36-39,共4页
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa... We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided. 展开更多
关键词 An Efficient three-dimensional Coupled Normal Mode Model and Its Application to Internal Solitary wave Problems
原文传递
The detonation wave propagation and the calculation methods for shock wave overpressure distribution of composite charges
20
作者 Jiaxin Yu Weibing Li +2 位作者 Junbao Li Xiaoming Wang Wenbin Li 《Defence Technology(防务技术)》 2025年第6期204-220,共17页
To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study ana... To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease. 展开更多
关键词 Composite charge Overdriven detonation shock wave overpressure Dimensional analysis Numerical simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部