期刊文献+
共找到532篇文章
< 1 2 27 >
每页显示 20 50 100
A human-machine interaction method for rock discontinuities mapping by three-dimensional point clouds with noises
1
作者 Qian Chen Yunfeng Ge +3 位作者 Changdong Li Huiming Tang Geng Liu Weixiang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1646-1663,共18页
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca... Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features. 展开更多
关键词 Rock discontinuities three-dimensional(3D)point clouds Discontinuity identification Orientation measurement Human-machine interaction
在线阅读 下载PDF
A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces 被引量:14
2
作者 Keshen Zhang Wei Wu +3 位作者 Hehua Zhu Lianyang Zhang Xiaojun Li Hong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期571-586,共16页
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by... This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases. 展开更多
关键词 Rock mass DISCONTINUITY three-dimensional point clouds Trace mapping
在线阅读 下载PDF
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space 被引量:7
3
作者 Yahui Liu Bin Tian +2 位作者 Yisheng Lv Lingxi Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期231-239,共9页
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT. 展开更多
关键词 Content-based Transformer deep learning feature aggregator local attention point cloud classification
在线阅读 下载PDF
Three-dimensional(3D)parametric measurements of individual gravels in the Gobi region using point cloud technique
4
作者 JING Xiangyu HUANG Weiyi KAN Jiangming 《Journal of Arid Land》 SCIE CSCD 2024年第4期500-517,共18页
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia... Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments. 展开更多
关键词 Gobi gravels three-dimensional(3D)parameters point cloud 3D reconstruction Random Sample Consensus(RANSAC)algorithm Density-Based Spatial Clustering of Applications with Noise(DBSCAN)
在线阅读 下载PDF
Point Cloud Classification Network Based on Graph Convolution and Fusion Attention Mechanism
5
作者 Tengteng Song Zhao Li +1 位作者 Zhenguo Liu Yizhi He 《Journal of Computer and Communications》 2022年第9期81-95,共15页
The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification ... The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved. 展开更多
关键词 Graph Convolution Neural Network Attention Mechanism Modelnet40 point cloud classification
在线阅读 下载PDF
Directional Point Net:3D Environmental Classification for Wearable Robots 被引量:1
6
作者 Kuangen ZHANG Jing WANG Chenglong FU 《Instrumentation》 2019年第1期25-33,共9页
A subject who wears a suitable robotic device will be able to walk in complex environments with the aid of environmental recognition schemes that provide reliable prior information of the human motion intent.Researche... A subject who wears a suitable robotic device will be able to walk in complex environments with the aid of environmental recognition schemes that provide reliable prior information of the human motion intent.Researchers have utilized 1 D laser signals and 2 D depth images to classify environments,but those approaches can face the problems of self-occlusion.In comparison,3 D point cloud is more appropriate for depicting the environments.This paper proposes a directional PointNet to directly classify the 3 D point cloud.First,an inertial measurement unit(IMU)is used to offset the orientation of point cloud.Then the directional PointNet can accurately classify the daily commuted terrains,including level ground,climbing up stairways,and walking down stairs.A classification accuracy of 98%has been achieved in tests.Moreover,the directional PointNet is more efficient than the previously used PointNet because the T-net,which is utilized to estimate the transformation of the point cloud,is not used in the present approach,and the length of the global feature is optimized.The experimental results demonstrate that the directional PointNet can classify the environments in robust and efficient manner. 展开更多
关键词 pointNet 3D ENVIRONMENTAL classification point cloud WEARABLE ROBOTS
原文传递
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
7
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 three-dimensional(3D)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:2
8
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
在线阅读 下载PDF
基于改进PointNet++的城市道路点云分类方法
9
作者 田晟 熊辰崟 龙安洋 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期1-14,共14页
城市道路场景的点云数据量巨大、类别分布不平衡且密度极不均匀,导致现有的点云分类方法难以满足高精度分类的需求。为了解决现有PointNet++网络对局部特征提取不充分的问题,本文充分考虑场景的上下文信息和点之间的全局依赖性,构建融... 城市道路场景的点云数据量巨大、类别分布不平衡且密度极不均匀,导致现有的点云分类方法难以满足高精度分类的需求。为了解决现有PointNet++网络对局部特征提取不充分的问题,本文充分考虑场景的上下文信息和点之间的全局依赖性,构建融合上下文信息的PointNet++点云分类网络模型。首先,基于注意力机制设计局部特征聚合模块,通过动态地融合邻域点特征以充分捕获局部信息。其次,考虑现有的分类模型不能顾及上下文信息,导致复杂场景下的分类性能受限,本文构建上下文感知模块和双注意力模块,从多个维度提取上下文信息,进一步增强特征的表达能力。实验结果表明:改进模型在大型点云数据集下具有更高的分类精度及更强的泛化性能(总体分类精度在Oakland和Paris公开数据集上分别为98.70%和96.84%),更适用于大规模点云分类。 展开更多
关键词 点云分类 pointNet++ 局部特征 注意力机制 上下文信息 城市道路
在线阅读 下载PDF
基于Point-Attention点云分类的激光雷达故障诊断方法研究
10
作者 谭光兴 程星 陈海峰 《现代电子技术》 北大核心 2025年第20期10-17,共8页
在智能车辆和自主机器人领域,激光雷达传感器因高精度和可靠性,被广泛应用于环境感知和物体检测,因此其故障诊断尤为重要。激光雷达内部的故障往往有固件提醒,而外部环境因素导致的故障检测挑战较大,比如车辆形变、污垢等导致的激光点... 在智能车辆和自主机器人领域,激光雷达传感器因高精度和可靠性,被广泛应用于环境感知和物体检测,因此其故障诊断尤为重要。激光雷达内部的故障往往有固件提醒,而外部环境因素导致的故障检测挑战较大,比如车辆形变、污垢等导致的激光点云遮挡故障,难以直接在固件层面体现,需通过外部检测进行诊断。为此,提出一种基于Point-Attention激光雷达遮挡故障诊断方法。首先,结合多头几何注意力机制模块与CBAM模块、残差连接机制,增强了模型对点云数据中关键特征的提取能力,提高了分类准确性和鲁棒性;在真实的ScanObjectNN数据集和ModelNet40基准数据集上对Point-Attention模型进行了实验。该模型在分类任务上准确率分别达到了93.7%、82.5%。其次,融合了一种时间特征捕捉机制,从而使模型能够更好地适应现实场景中的时间相关性,进而更准确地处理激光雷达的遮挡故障。实验结果表明,所提方法能有效诊断激光雷达遮挡故障,最佳总体精度达99%以上,为激光雷达故障诊断提供了一种高效准确的解决方案。 展开更多
关键词 激光雷达 故障诊断 点云分类 残差连接 遮挡检测 时间特征捕捉
在线阅读 下载PDF
Point-GBLS:结合深宽度学习的三维点云分类网络
11
作者 张国有 左嘉欣 +3 位作者 潘理虎 郝志祥 郭伟 张雪楠 《计算机系统应用》 2025年第3期1-13,共13页
基于点云的三维物体识别和检测是计算机视觉和自主导航领域的一个重要研究课题.如今,深度学习算法大大提高了三维点云分类的准确性和鲁棒性.然而,深度学习网络通常存在网络结构复杂、训练过程耗时等问题.本文提出了一种三维点云分类网络... 基于点云的三维物体识别和检测是计算机视觉和自主导航领域的一个重要研究课题.如今,深度学习算法大大提高了三维点云分类的准确性和鲁棒性.然而,深度学习网络通常存在网络结构复杂、训练过程耗时等问题.本文提出了一种三维点云分类网络Point-GBLS,它将深度学习和宽度学习系统结合在一起.网络结构简单,训练时间短.首先通过基于深度学习的特征提取网络提取点云特征,然后用改进的宽度学习系统对其进行分类.ModelNet40和ScanObjectNN数据集上的实验表明,Point-GBLS识别准确率分别达到92%以上和78%以上,训练时间低于同类深度学习方法的50%以上,优于具有相同骨干的深度学习网络. 展开更多
关键词 三维模型分类 点云 深度学习 宽度学习系统
在线阅读 下载PDF
A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models 被引量:11
12
作者 Rushikesh Battulwar Masoud Zare-Naghadehi +1 位作者 Ebrahim Emami Javad Sattarvand 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期920-936,共17页
In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for ... In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models. 展开更多
关键词 Rock mass Discontinuity characterization Automatic extraction three-dimensional(3D)point cloud
在线阅读 下载PDF
基于PointCloudTransformer和优化集成学习的三维点云分类 被引量:2
13
作者 于喜俊 段勇 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期143-153,共11页
针对三维点云的不规则性和无序性所导致的难于提取特征并进行分类的问题,提出了一种融合深度学习和集成学习的三维点云分类方法。首先,训练深度学习点云分类网络PointCloudTransformer,并使用主干网络提取点云特征,进而训练基分类器,获... 针对三维点云的不规则性和无序性所导致的难于提取特征并进行分类的问题,提出了一种融合深度学习和集成学习的三维点云分类方法。首先,训练深度学习点云分类网络PointCloudTransformer,并使用主干网络提取点云特征,进而训练基分类器,获得基分类器集合;然后,针对集成学习算法设计基分类器选择模型,模型的优化目标为基分类器组合的差异性和平均总体精度。为了降低集成规模,本文基于增强后的白鲸优化算法提出了二元多目标白鲸优化算法,并使用该算法优化基分类器选择模型,获得集成剪枝方案集合;最后,采用多数投票法集成每个基分类器组合在测试集点云特征上的分类结果,获得最优基分类器组合,从而构建基于多目标优化剪枝的集成学习点云分类模型。在点云分类数据集上的实验结果表明,本文方法使用了更小的集成规模,获得了更高的集成精度,能够对多类别三维点云进行准确分类。 展开更多
关键词 三维点云分类 深度学习 集成学习 白鲸优化算法 多目标优化
原文传递
基于Point Transformer方法的鱼类三维点云模型分类 被引量:1
14
作者 胡少秋 段瑞 +3 位作者 张东旭 鲍江辉 吕华飞 段明 《水生生物学报》 北大核心 2025年第2期146-155,共10页
为实现对不同鱼类的精准分类,研究共采集110尾真实鱼类的三维模型,对获取的3D模型进行基于预处理、旋转增强和下采样等操作后,获取了1650尾实验样本。然后基于Point Transformer网络和2个三维分类的对比网络进行数据集的分类训练和验证... 为实现对不同鱼类的精准分类,研究共采集110尾真实鱼类的三维模型,对获取的3D模型进行基于预处理、旋转增强和下采样等操作后,获取了1650尾实验样本。然后基于Point Transformer网络和2个三维分类的对比网络进行数据集的分类训练和验证。结果表明,利用本实验的目标方法Point Transformer获得了比2个对比网络更好的分类结果,整体的分类准确率能够达到91.9%。同时对所使用的三维分类网络进行有效性评估,3个模型对于5种真实鱼类模型的分类是有意义的,其中Point Transformer的模型ROC曲线准确率最高,AUC面积最大,对于三维鱼类数据集的分类最为有效。研究提供了一种可以实现对鱼类三维模型进行精准分类的方法,为以后的智能化渔业资源监测提供一种新的技术手段。 展开更多
关键词 点云处理 point Transformer 三维模型 鱼类分类
在线阅读 下载PDF
Weight-Edge Convolution Neural Network for Point Clouds Learning
15
作者 QIU Xiong ZHANG Juan +2 位作者 ZHU Wumingrui ZHANG Shuqi KONG Lihong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第2期137-146,共10页
As a kind of flexible three-dimensional geometric data, point clouds can accomplish many challenging tasks so long as the rich information in the geometric topology architecture can be deeply analyzed. On account of t... As a kind of flexible three-dimensional geometric data, point clouds can accomplish many challenging tasks so long as the rich information in the geometric topology architecture can be deeply analyzed. On account of that point cloud data is sparse, disordered and rotation-invariant, the success of convolutional neural network in 2 D image cannot be directly reproduced on point cloud. In this paper, we propose WECNN, namely, Weight-Edge Convolution Neural Network, which has an excellent ability to utilize local structural features. As the core of WECNN, a novel convolution operator called WEConv tries to capture structural features by constructing a fixed number of directed graphs and extracting the edge information of the graph to further analyze the local regions of point cloud. Moreover, a weight function is designed for different tasks to assign weights to the edges, so that feature extractions on the edges can be more fine-grained and robust. WECNN gets overall accuracy of 93.8% and mean class accuracy of 91.6% on Model Net40 dataset. At the same time, it gets a mean Io U of 85.5% on Shape Net Part dataset. Results of extensive experiments show that our WECNN outperforms other classification and segmentation approaches on challenging benchmarks. 展开更多
关键词 point cloud 3D object classification part segmentation graph convolution
原文传递
A spatial-spectral classification framework for multispectral LiDAR
16
作者 Shuo Shi Biwu Chen +9 位作者 Sifu Bi Junkai Li Wei Gong Jia Sun Bowen Chen Lin Du Jian Yang Qian Xu Fei Wang Shalei Song 《Geo-Spatial Information Science》 CSCD 2024年第5期1460-1474,共15页
Precise classification of Light Detection and Ranging(LiDAR)point cloud is a fundamental process in various applications,such as land cover mapping,forestry management,and autonomous driving.Due to the lack of spectra... Precise classification of Light Detection and Ranging(LiDAR)point cloud is a fundamental process in various applications,such as land cover mapping,forestry management,and autonomous driving.Due to the lack of spectral information,the existing research on single wavelength LiDAR classification is limited.Spectral information from images could address this limitation,but data fusion suffers from varying illumination conditions and the registration problem.A novel multispectral LiDAR successfully obtains spatial and spectral information as a brand-new data type,namely,multispectral point cloud,thereby improving classification performance.However,spatial and spectral information of multispectral LiDAR has been processed separately in previous studies,thereby possibly limiting the classification performance of multispectral LiDAR.To explore the potential of this new data type,the current spatial-spectral classification framework for multispectral LiDAR that includes four steps:(1)neighborhood selection,(2)feature extraction and selection,(3)classification,and(4)label smoothing.Three novel highlights were proposed in this spatial-spectral classification framework.(1)We improved the popular eigen entropy-based neighborhood selection by spectral angle match to extract a more precise neighborhood.(2)We evaluated the importance of geometric and spectral features to compare their contributions and selected the most important features to reduce feature redundancy.(3)We conducted spatial label smoothing by a conditional random field,accounting for the spatial and spectral information of the neighborhood points.The proposed method demonstrated by a multispectral LiDAR with three channels:466 nm(blue),527 nm(green),and 628 nm(red).Experimental results demonstrate the effectiveness of the proposed spatial-spectral classification framework.Moreover,this research takes advantages of the complementation of spatial and spectral information,which could benefit more precise neighborhood selection,more effective features,and satisfactory refinement of classification result.Finally,this study could serve as an inspiration for future efficient spatial-spectral process for multispectral point cloud. 展开更多
关键词 multispectral Light Detection and Ranging(LiDAR) point cloud classification neighborhood selection feature selection condition random field
原文传递
位置自适应卷积PointNet++的点云数据分类方法
17
作者 闫晓奇 彭逸清 任小玲 《计算机与现代化》 2025年第1期44-49,共6页
针对复杂场景中点云数据分类精度低问题,提出一种基于位置自适应卷积的PointNet++深度神经网络模型。由于位置自适应卷积具有较强捕捉细粒度局部特征能力,能充分获取三维点云的空间变化和几何结构特征信息,故本文在PointNet++基础上,首... 针对复杂场景中点云数据分类精度低问题,提出一种基于位置自适应卷积的PointNet++深度神经网络模型。由于位置自适应卷积具有较强捕捉细粒度局部特征能力,能充分获取三维点云的空间变化和几何结构特征信息,故本文在PointNet++基础上,首先通过最远点采样获取关键点,其次根据关键点使用K最近邻方法(KNN)实现分组,然后由位置自适应卷积代替原方法中的MLP提取每组的局部特征,最终完成点云分类。在2个公开的点云数据集S3DIS、Semantic3D上对本文方法进行多次对比实验,实验结果表明,本文方法在室内数据集S3DIS上的总体精度和mIoU较PointNet++网络分别提高约2.7个百分点和3.2个百分点,在室外数据集Semantic3D上的总体精度和mIoU PointNet++分别高出约2.5个百分点和2.1个百分点。 展开更多
关键词 点云分类 位置自适应卷积 pointNet++ 深度学习 局部特征
在线阅读 下载PDF
FPSMix: data augmentation strategy for point cloud classification
18
作者 Taiyan CHEN Xianghua YING 《Frontiers of Computer Science》 2025年第2期105-113,共9页
Data augmentation is a widely used regularization strategy in deep neural networks to mitigate overfitting and enhance generalization.In the context of point cloud data,mixing two samples to generate new training exam... Data augmentation is a widely used regularization strategy in deep neural networks to mitigate overfitting and enhance generalization.In the context of point cloud data,mixing two samples to generate new training examples has proven to be effective.In this paper,we propose a novel and effective approach called Farthest Point Sampling Mix(FPSMix)for augmenting point cloud data.Our method leverages farthest point sampling,a technique used in point cloud processing,to generate new samples by mixing points from two original point clouds.Another key innovation of our approach is the introduction of a significance-based loss function,which assigns weights to the soft labels of the mixed samples based on the classification loss of each part of the new sample that is separated from the two original point clouds.This way,our method takes into account the importance of different parts of the mixed sample during the training process,allowing the model to learn better global features.Experimental results demonstrate that our FPSMix,combined with the significance-based loss function,improves the classification accuracy of point cloud models and achieves comparable performance with state-of-the-art data augmentation methods.Moreover,our approach is complementary to techniques that focus on local features,and their combined use further enhances the classification accuracy of the baseline model. 展开更多
关键词 point cloud classification data augmentation loss function point cloud understanding point cloud analysis
原文传递
Image and point-cloud classification for jet analysis in high-energy physics:A survey
19
作者 Hamza Kheddar Yassine Himeur +1 位作者 Abbes Amira Rachik Soualah 《Frontiers of physics》 2025年第3期1-33,共33页
Nowadays,there has been a growing trend in the field of high-energy physics(HEP),in both its experimental and phenomenological studies,to incorporate machine learning(ML)and its specialized branch,deep learning(DL).Th... Nowadays,there has been a growing trend in the field of high-energy physics(HEP),in both its experimental and phenomenological studies,to incorporate machine learning(ML)and its specialized branch,deep learning(DL).This review paper provides a thorough illustration of these applications using different ML and DL approaches.The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models.Next,a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions,mainly in proton-proton collisions at well-defined beam energies.This section covers various datasets,preprocessing techniques,and feature extraction and selection methods.The presented techniques can be applied to future hadron–hadron colliders(HHC),such as the high-luminosity LHC(HL-LHC)and the future circular collider–hadron–hadron(FCC-hh).The authors then explore several AI techniques analyses designed specifically for both image and point-cloud(PC)data in HEP.Additionally,a closer look is taken at the classification associated with Jet tagging in hadron collisions.In this review,various state-of-the-art(SOTA)techniques in ML and DL are examined,with a focus on their implications for HEP demands.More precisely,this discussion addresses various applications in extensive detail,such as Jet tagging,Jet tracking,and particle classification.The review concludes with an analysis of the current state of HEP using DL methodologies.It highlights the challenges and potential areas for future research,which are illustrated for each application. 展开更多
关键词 jet images jet point cloud high energy physics image classification deep learning machine learning
原文传递
基于PointNet++的逆密度点云识别与分割算法
20
作者 周江伟 邵洁 曹盛 《计算机测量与控制》 2025年第9期334-341,共8页
为了提高点云处理精度,针对PointNet++对不均匀分布的点云数据特征提取不完整以及忽略了部分点云特征导致分类与分割结果不佳等问题,对算法PointNet++进行了研究,提出了基于PointNet++的融合密度信息的逆密度点云识别与分割算法D-PointN... 为了提高点云处理精度,针对PointNet++对不均匀分布的点云数据特征提取不完整以及忽略了部分点云特征导致分类与分割结果不佳等问题,对算法PointNet++进行了研究,提出了基于PointNet++的融合密度信息的逆密度点云识别与分割算法D-PointNet++;利用点云密度计算出每个点的采样概率,根据采样概率使用多项分布进行点云采样;通过自适应缩放分组半径进行点云分组;采用多种池化方法混合提取点云特征并利用多头注意力机制计算出多种特征的权重,并加权聚合得到点云的全局特征;实验结果表明,相较于多种参评算法,D-PointNet++在点云分类准确率、分割精度上均有显著提升。 展开更多
关键词 三维点云 点云分类 深度学习 注意力机制 点云分割 激光点云
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部