期刊文献+
共找到12,697篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchical cooperative path planning method using three-dimensional velocity-obstacle strategy for multiple fixed-wing UAVs
1
作者 ZHOU Zhenlin LONG Teng +1 位作者 SUN Jingliang LI Junzhi 《Journal of Systems Engineering and Electronics》 2025年第5期1342-1352,共11页
A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path... A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method. 展开更多
关键词 three-dimensional path planning Dubins path method velocity obstacle collision avoidance
在线阅读 下载PDF
HS-APF-RRT*: An Off-Road Path-Planning Algorithm for Unmanned Ground Vehicles Based on Hierarchical Sampling and an Enhanced Artificial Potential Field
2
作者 Zhenpeng Jiang Qingquan Liu Ende Wang 《Computers, Materials & Continua》 2026年第1期1218-1235,共18页
Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees l... Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins. 展开更多
关键词 RRT* APF path planning OFF-ROAD Unmanned Ground Vehicle(UGV)
在线阅读 下载PDF
Revolutionizing hepatobiliary surgery:Impact of three-dimensional imaging and virtual surgical planning on precision,complications,and patient outcomes
3
作者 Himanshu Agrawal Himanshu Tanwar Nikhil Gupta 《Artificial Intelligence in Gastroenterology》 2025年第1期39-51,共13页
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonanc... BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy. 展开更多
关键词 three-dimensional imaging Virtual surgical planning Hepatobiliary surgery Surgical precision Preoperative planning
暂未订购
Three-dimension collision-free trajectory planning of UAVs based on ADS-B information in low-altitude urban airspace 被引量:2
4
作者 Chao DONG Yifan ZHANG +3 位作者 Ziye JIA Yiyang LIAO Lei ZHANG Qihui WU 《Chinese Journal of Aeronautics》 2025年第2期274-285,共12页
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d... The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace. 展开更多
关键词 three-dimension trajectory planning of UAV Collision avoidance Sliding window ADS-B Low-altitude urban airspace
原文传递
A parameter-variant trochoidal-like tool path planning method for chatter-free and high-efficiency milling 被引量:1
5
作者 Zhaoliang LI Jinbo NIU +1 位作者 Shuoxue SUN Yuwen SUN 《Chinese Journal of Aeronautics》 2025年第2期559-576,共18页
Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lowe... Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Trochoidal milling Milling stability Tool path planning Machining efficiency Bull-nose end mill
原文传递
Optimization-based conformal path planning for in situ bioprinting during complex skin defect repair 被引量:1
6
作者 Wenxiang Zhao Chuxiong Hu +3 位作者 Yunan Wang Shize Lin Ze Wang Tao Xu 《Bio-Design and Manufacturing》 2025年第1期1-19,I0001,共20页
The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving... The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes. 展开更多
关键词 In situ bioprinting path planning Robot control Skin injury repair
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
7
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
8
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot path planning Improved A^(*)algorithm
在线阅读 下载PDF
Multi-UAV path planning for multiple emergency payloads delivery in natural disaster scenarios 被引量:1
9
作者 Zarina Kutpanova Mustafa Kadhim +1 位作者 Xu Zheng Nurkhat Zhakiyev 《Journal of Electronic Science and Technology》 2025年第2期1-18,共18页
Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as... Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance. 展开更多
关键词 Deep Q-network First aid delivery Multi-UAV path planning Reinforcement learning Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Intelligent path planning for small modular reactors based on improved reinforcement learning
10
作者 DONG Yun-Feng ZHOU Wei-Zheng +1 位作者 WANG Zhe-Zheng ZHANG Xiao 《四川大学学报(自然科学版)》 北大核心 2025年第4期1006-1014,共9页
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous... Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future. 展开更多
关键词 Small modular reactor Operating condition recognition path planning Reinforcement learning
在线阅读 下载PDF
AUV 3D path planning based on improved PSO
11
作者 LI Hongen LI Shilong +1 位作者 WANG Qi HUANG Xiaoming 《Journal of Systems Engineering and Electronics》 2025年第3期854-866,共13页
The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning... The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy. 展开更多
关键词 autonomous underwater vehicle(AUV) three-dimensional(3D)path planning particle swarm optimization(PSO) cubic spline interpolation
在线阅读 下载PDF
UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm
12
作者 Wenli Lei Xinghao Wu +1 位作者 KunJia Jinping Han 《Computers, Materials & Continua》 2025年第6期5679-5698,共20页
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose... Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution. 展开更多
关键词 UAV path planning chimp optimization algorithm chaotic mapping adaptive weighting
在线阅读 下载PDF
Automated Bionic Wig Weaving Process Design and Weaving Path Planning
13
作者 LYU Hongzhan YOU Jia +2 位作者 LI Junjie LU Licheng SUN Zhihong 《Journal of Donghua University(English Edition)》 2025年第5期550-557,共8页
The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic w... The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs. 展开更多
关键词 bionic wig weaving process wig weaving machine path planning
在线阅读 下载PDF
A multi-parametric path planning framework utilizing airspace visibility graphs for urban battlefield environments
14
作者 Sidao Chen Xuejun Zhang +1 位作者 Zuyao Zhang Jianxiang Ma 《Defence Technology(防务技术)》 2025年第9期112-126,共15页
Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threat... Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time. 展开更多
关键词 UAV path planning Urban battlefield environment Airspace visibility graph ISOVIST
在线阅读 下载PDF
Multi-UAV Collaborative Path Planning Method Fusing Multi-Head Attention and SAC
15
作者 Ziyi Zhu Ji Huang Wangye Jiang 《Instrumentation》 2025年第4期57-62,共6页
Aiming at the problem of low convergence efficiency of traditional multi-UAV path planning algorithms in unknown complex environments,this paper proposes a deep reinforcement learning algorithm incorporating the atten... Aiming at the problem of low convergence efficiency of traditional multi-UAV path planning algorithms in unknown complex environments,this paper proposes a deep reinforcement learning algorithm incorporating the attention mechanism.The method is based on the Soft Actor-Critic(SAC)framework,which introduces a multi-attention mechanism in the Critic network,dynamically learns the dependency relationship between intelligences,and realizes key information screening and conflict avoidance.An environment with multiple random obstacles is designed to simulate complex emergent situations.The results show that the proposed algorithm significantly improves the mission success rate and average reward,significantly extends the survival time and exploration range of the UAVs,and verifies the effectiveness of the attention mechanism in enhancing the efficiency,robustness,and long-term planning capability of multi-UAV collaboration,as compared to the baseline method that does not use attention. 展开更多
关键词 Multi-UAV path planning soft actor-critic attention mechanism
原文传递
Analysis of Path Planning and Navigation for Smart Plastering Robots Based on Indoor Construction
16
作者 Yun Zeng Zhenzhou Ding +1 位作者 Daipeng Chen Mi Xiao 《Journal of Architectural Research and Development》 2025年第3期23-29,共7页
Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of mult... Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of multi-sensor fusion localization algorithms for smart plastering robots,and an analysis of path planning and navigation functions for smart plastering robots.It is hoped that through this analysis,a reference is provided for the path planning and navigation design of such robots to meet their practical application needs. 展开更多
关键词 Construction engineering Indoor construction Smart plastering robot path planning Navigation function
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
17
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Obstacle Avoidance Path Planning for Delta Robots Based on Digital Twin and Deep Reinforcement Learning
18
作者 Hongxiao Wang Hongshen Liu +3 位作者 Dingsen Zhang Ziye Zhang Yonghui Yue Jie Chen 《Computers, Materials & Continua》 2025年第5期1987-2001,共15页
Despite its immense potential,the application of digital twin technology in real industrial scenarios still faces numerous challenges.This study focuses on industrial assembly lines in sectors such as microelectronics... Despite its immense potential,the application of digital twin technology in real industrial scenarios still faces numerous challenges.This study focuses on industrial assembly lines in sectors such as microelectronics,pharmaceuticals,and food packaging,where precision and speed are paramount,applying digital twin technology to the robotic assembly process.The innovation of this research lies in the development of a digital twin architecture and system for Delta robots that is suitable for real industrial environments.Based on this system,a deep reinforcement learning algorithm for obstacle avoidance path planning in Delta robots has been developed,significantly enhancing learning efficiency through an improved intermediate reward mechanism.Experiments on communication and interaction between the digital twin system and the physical robot validate the effectiveness of this method.The system not only enhances the integration of digital twin technology,deep reinforcement learning and robotics,offering an efficient solution for path planning and target grasping inDelta robots,but also underscores the transformative potential of digital twin technology in intelligent manufacturing,with extensive applicability across diverse industrial domains. 展开更多
关键词 Digital twin deep reinforcement learning delta robot obstacle path planning
在线阅读 下载PDF
Integrating just-in-time expansion primitives and an adaptive variable-step-size mechanism for feasible path planning of finite-wing UAVs
19
作者 Hui GAO Yuhong JIA +2 位作者 Qingyang QIN Liwen XU Yaoming ZHOU 《Chinese Journal of Aeronautics》 2025年第12期376-403,共28页
Path planning is crucial for autonomous flight of fixed-wing Unmanned Aerial Vehicles(UAVs).However,due to the high-speed flight and complex control of fixed-wing UAVs,ensuring the feasibility and safety of planned pa... Path planning is crucial for autonomous flight of fixed-wing Unmanned Aerial Vehicles(UAVs).However,due to the high-speed flight and complex control of fixed-wing UAVs,ensuring the feasibility and safety of planned paths in complex environments is challenging.This paper proposes a feasible path planning algorithm named Closed-loop Radial Ray A^(*)(CL-RaA^(*)).The core components of the CL-RaA^(*)include an adaptive variable-step-size path search and a just-in-time expansion primitive.The former enables fast path search in complex environments,while the latter ensures the feasibility of the generated paths.By integrating these two components and conducting safety checks on the trajectories to be expanded,the CL-RaA^(*)can rapidly generate safe and feasible paths that satisfy the differential constraints that comprehensively consider the dynamics and control characteristics of six-degree-of-freedom fixed-wing UAVs.The final performance tests and simulation validations demonstrate that the CL-RaA^(*)can generate safe and feasible paths in various environments.Compared to feasible path planning algorithms that use the rapidlyexploring random trees,the CL-RaA^(*)not only ensures deterministic planning results in the same scenarios but also generates smoother feasible paths for fixed-wing UAVs more efficiently.In environments with dense grid obstacles,the feasible paths generated by the CL-RaA^(*)are more conducive to UAV tracking compared to those planned using Dubins curves. 展开更多
关键词 Adaptive variable step size Differential constraint Feasible path planning Fixed-wing unmanned aerial vehicle(UAV) Just-in-time expansion primitive path search
原文传递
Robot path planning based on a two-stage DE algorithm and applications
20
作者 SUN Zhe CHENG Jiajia +2 位作者 BI Yunrui ZHANG Xu SUN Zhixin 《Journal of Southeast University(English Edition)》 2025年第2期244-251,共8页
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a... To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning. 展开更多
关键词 path planning differential evolution algorithm grid method parameter adaptive adjustment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部