期刊文献+
共找到33,409篇文章
< 1 2 250 >
每页显示 20 50 100
HOTCAP:a new software package for high-speed oscilloscopebased three-dimensional bunch charge and position measurement 被引量:7
1
作者 Xing-Yi Xu Yong-Bin Leng +4 位作者 Bo Gao Yi-Mei Zhou Shan-Shan Cao Jian Chen Fang-Zhou Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期163-173,共11页
A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by t... A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input,and it calculates and outputs the bunch-by-bunch charge and position.In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes,it offers many additional features such as injection analysis,bunch response function reconstruction,and turn-by-turn beam analysis.The software package has an easy-to-understand graphical user interface and convenient interactive operation,which has been verified on the Windows 10 system. 展开更多
关键词 Bunch-by-bunch measurement HOTCAP software package Data analysis High-speed oscilloscope
在线阅读 下载PDF
Global Mapping of Three-Dimensional Urban Structures Reveals Escalating Utilization in the Vertical Dimension and Pronounced Building Space Inequality 被引量:1
2
作者 Xiaoping Liu Xinxin Wu +6 位作者 Xuecao Li Xiaocong Xu Weilin Liao Limin Jiao Zhenzhong Zeng Guangzhao Chen Xia Li 《Engineering》 2025年第4期86-99,共14页
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan... Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies. 展开更多
关键词 three-dimensional Global mapping Building volume Building height Building space inequality
在线阅读 下载PDF
Three-dimensional line-of-sight-angle-constrained leader-following cooperative interception guidance law with prespecified impact time 被引量:2
3
作者 Hao YOU Xinlong CHANG Jiufen ZHAO 《Chinese Journal of Aeronautics》 2025年第1期491-506,共16页
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea... To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law. 展开更多
关键词 three-dimensional cooperative interception Leader-following missiles Prespecified impact time LOS-angle-constrained Fixed-time stability Global integral sliding mode
原文传递
Three-dimensional models:from cell culture to Patient-Derived Organoid and its application to future liposarcoma research
4
作者 SAYUMI TAHARA SYDNEY RENTSCH +4 位作者 FERNANDA COSTAS CASAL DE FARIA PATRICIA SARCHET ROMA KARNA FEDERICA CALORE RAPHAEL E.POLLOCK 《Oncology Research》 SCIE 2025年第1期1-13,共13页
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ... Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma. 展开更多
关键词 Cell culture LIPOSARCOMA Patient-Derived Organoid(PDO) SPHEROID three-dimensional(3D)cell culture
暂未订购
Glasses-free three-dimensional laparoscopic systems in oncologic surgery:Innovation or equivalence?
5
作者 Gustavo Eder González Alvarez Christian Ramírez Sánchez +3 位作者 Melissa Martínez Nieto Mario A Alarcón-Sánchez Juan JoséVarela-Hernández Sarah M LomelíMartínez 《World Journal of Gastrointestinal Surgery》 2025年第11期6-11,共6页
The development of minimally invasive surgery has transformed the management of gastrointestinal cancer.Notably,three-dimensional visualization systems have increased surgical precision.This editorial discusses a rece... The development of minimally invasive surgery has transformed the management of gastrointestinal cancer.Notably,three-dimensional visualization systems have increased surgical precision.This editorial discusses a recent study by Shen and Zhang,which compared the clinical applications of naked-eye threedimensional laparoscopic systems vs traditional optical systems in radical surgery for gastric and colorectal cancer.Both systems appeared to yield comparable surgical and oncological outcomes in terms of safety parameters,operating times,and quality of lymph node dissection.However,the spectacle-free system’s technical and logistical limitations hindered its effects on the surgical team’s overall competency.This editorial examines the authors’findings within the broader context of the evolution of oncologic laparoscopy,discusses the relevance of the results in light of the current literature,and proposes future research directions focused on multicenter validation,comprehensive ergonomic analysis,and technological advancements aimed at enhancing intraoperative collaboration.As technology continues to evolve,clinical implementation of new methods must be supported by robust scientific evidence and standardized criteria,to ensure tangible improvements in efficiency,safety,and oncologic outcomes. 展开更多
关键词 Autostereoscopic three-dimensional technology Laparoscopic surgery three-dimensional laparoscopy Twodimensional laparoscopy Oncologic surgery
暂未订购
Active food packaging:latest development trends and future prospects
6
作者 Jian Ju 《Food and Health》 2025年第2期1-2,共2页
With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and... With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends. 展开更多
关键词 ACTIVE packaging primarily
在线阅读 下载PDF
Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films:A Novel Active Food Packaging Material
7
作者 María Fernanda Cardona Lunar Ramón Ordoñez +2 位作者 Heidi Fonseca Florido Joaquín Hernández-Fernández Rodrigo Ortega-Toro 《Journal of Renewable Materials》 2025年第2期311-327,共17页
The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(M... The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry. 展开更多
关键词 Biodegradable packaging graphene oxide Moringa oleifera seed oil mechanical properties thermal stability water vapor resistance food packaging applications
在线阅读 下载PDF
Mapping Research Trends in Green Packaging:A Bibliometric Review(2000–2023)
8
作者 Lyu Jun Bakti Hasan-Basri Normizan Bakar 《Journal of Environmental & Earth Sciences》 2025年第8期101-130,共30页
With over 141 million tons of packaging waste generated globally each year and limited recycling efficiency,packaging pollution has become a pressing environmental issue,driving increased scholarly interest in green p... With over 141 million tons of packaging waste generated globally each year and limited recycling efficiency,packaging pollution has become a pressing environmental issue,driving increased scholarly interest in green packaging.However,existing studies have primarily focused on individual domains,lacking a systematic and comprehensive review,which restricts interdisciplinary integration and obscures overarching trends and gaps.To address this,we conducted a bibliometric analysis of green packaging research using CiteSpace and VOSviewer,drawing on peer-reviewed English-language articles published between 2000 and 2023 in the Web of Science Core Collection.The analysis examined collaboration networks,co-citation patterns,and keyword co-occurrence trends.Results reveal significant growth in publications since 2018,with research spanning environmental science,food technology,and business,alongside increasing interdisciplinary integration.Collaboration networks are particularly strong within China and Malaysia,though international collaboration remains limited,while co-citation analysis highlights high-impact work on material performance,consumer behavior,and supply chain strategies,with life cycle assessment emerging as the most widely applied analytical tool.This study synthesizes the current knowledge framework,identifies key trends and challenges,and outlines future research directions-including consumer payment behavior,corporate sustainability strategies,and the development of innovative packaging materials-providing strategic guidance for advancing green packaging research. 展开更多
关键词 Green packaging BIBLIOMETRICS CITESPACE VOSviewer VISUALIZATION
在线阅读 下载PDF
Development and Performance Study of High-Performance Electronic Packaging Materials
9
作者 Shenglan Fang 《材料科学研究(中英文版)》 2025年第2期1-6,共6页
As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These mater... As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications. 展开更多
关键词 Electronic packaging Materials Thermal Interface Materials High-Performance Composites NANOMATERIALS Thermal Conductivity 3D packaging RELIABILITY Polymer Composites Dielectric Properties MICROFABRICATION
在线阅读 下载PDF
Bio-Composite Films from Carrageenan/Starch Reinforced with Nanocellulose for Active Edible Food Packaging:Development and Optimization
10
作者 Mariia Dmitrenko Daniel Pasquini +9 位作者 Marcela Piassi Bernardo Joao Marcelo de Lima Alves Anna Kuzminova Ilnur Dzhakashov Andrey Terentyev Alexander Dyachkov K.S.Joshy Maya Jacob John Sabu Thomas Anastasia Penkova 《Journal of Renewable Materials》 2025年第6期1139-1168,共30页
Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable al... Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables. 展开更多
关键词 CARRAGEENAN STARCH NANOCELLULOSE edible film packaging material
在线阅读 下载PDF
Investigation into the degradation of 2,4,6-trichlorophenol utilizing a three-dimensional electrocatalytic reactor filled with fluorine-doped copper-carbon particle electrodes
11
作者 Hongrui Zhang Wenyu Huang +4 位作者 Hainong Song Hanhui Yan Jia Zhang Fang Zhong Huilan Li 《Journal of Environmental Sciences》 2025年第9期701-719,共19页
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata... The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP. 展开更多
关键词 2 4 6-TRICHLOROPHENOL Heterogeneous Fenton-like process three-dimensional electrocatalytic reactor three-dimensional particle electrode system Fluorine-doped copper-carbon particle electrodes
原文传递
Anchoring sulfur migration to mitigate Kirkendall voids in nano-twinned copper interconnections for robust and reliable packaging
12
作者 Zicheng Sa Shang Wang +6 位作者 He Zhang Jiayun Feng Haozhe Li Jingxuan Ma Xudong Liu Qing Sun Yanhong Tian 《Journal of Materials Science & Technology》 2025年第27期106-119,共14页
Nano-twinned copper(nt-Cu),with a preferred orientation,is highly promising as interconnect materials in high-density advanced packaging due to its considerable mechanical strength,excellent electrical conductivity,an... Nano-twinned copper(nt-Cu),with a preferred orientation,is highly promising as interconnect materials in high-density advanced packaging due to its considerable mechanical strength,excellent electrical conductivity,and resistance to thermal migration.However,its application is impeded by sulfur-containing byproducts from the electroplating process,exacerbating the formation of Kirkendall voids within solder joints during thermal aging.Herein,through the incorporation of Zinc(Zn)into the nt-Cu layer,we develop a nt-Cu/Zn composite structure.Our findings provide the first definitive confirmation of the mechanism by which sulfur atoms migrate to the Cu_(3)Sn/nt-Cu interface through interstitial diffusion,thereby reducing the activation energy for vacancy formation.We further demonstrate that Zn effectively an-choring sulfur atoms,forming ZnS within the nt-Cu layer during heat treatment,which increases the vacancy formation energy and inhibits the development of Kirkendall voids.Remarkably,no Kirkendall voids are observed in the modified interconnects even after prolonged aging at 150℃ for 1000 h.The nt-Cu/Zn composite metallization layers significantly decrease the growth rate of interfacial intermetallic compounds by 33.6% and enhance the shear strength of solder interconnections to 228.9%.This research underscores the potential of nt-Cu in advanced electronic packaging,offering new pathways for improving the power density and reliability of electronic devices. 展开更多
关键词 Nano-twinned copper Electroplating Interconnections Kirkendall voids Advanced packaging
原文传递
Toxicological and Safety Considerations of Nanocellulose-Containing Packaging Materials
13
作者 Lucila M.Curi Maria C.Area Maria E.Vallejos 《Journal of Renewable Materials》 2025年第11期2109-2137,共29页
The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited s... The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited studies are available regarding the potential toxicological impact of NC.We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose(CNF)and identify knowledge gaps.For this purpose,we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging.We also analyze the main methods used for toxicity evaluations and the main studies about toxicity evaluation using different biomarkers for a broad interpretation.This comprehensive biblio-graphic review highlights the critical need for further research to elucidate the mechanisms fully underlining NC toxicity,mainly due to its nanofibrillar structure.We focus on the cellular responses across different evaluated cell types through in vitro evaluation,always within the context of the dose used,the type of material or its source,and the type of biomarkers used in the assessments.The importance of addressing safety considerations and key knowledge gaps for the responsible use of CNF derived fromlignocellulosic biomass and its bionanocomposites in food packaging is highlighted. 展开更多
关键词 Cytotoxicity studies nanofibrillated cellulose in vitro nanosafety packaging TOXICITY
在线阅读 下载PDF
High-performance Cu-Cu interconnects attained through air sintering of oleylamine-capped Cu nanoparticles for power electronics packaging
14
作者 Shi-Yu Xia Xiang-Ji Li +7 位作者 Ying-Jie Guo Jun-Jie Yuan Zhe-Fei Sun Hui-Jun Cao Shu-Ye Zhang Wen-Zhi Cai Jin-Tang Li Zhi-Hao Zhang 《Rare Metals》 2025年第5期3281-3298,共18页
Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of h... Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments. 展开更多
关键词 Air sintering Power electronics packaging Cu nanoparticles Flexible sensor
原文传递
A Review of Three-Dimensional Research on Urban Recreation Space Based on CiteSpace
15
作者 LIU Yongli 《Journal of Landscape Research》 2025年第1期30-34,共5页
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t... In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”. 展开更多
关键词 Compact city Urban recreation space three-dimensional CITESPACE
在线阅读 下载PDF
Design of Campus Self-service Express Packaging Recycling Machine
16
作者 Yu XU Wenwu ZHANG +3 位作者 Guangchen XU Pengxiang ZHAO Zhengliang ZHANG Xueshu LIU 《Mechanical Engineering Science》 2025年第1期4-7,共4页
Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a ... Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a winding device and an electronic control system to promote the recycling of resources and environmental protection.This device can further improve the recycling efficiency and feasibility.It provides new ideas and solutions for the express industry and promotes the development of sustainable design in the field of express packaging recycling and reuse devices. 展开更多
关键词 carton packaging recycling machine design strapping device automatic recycling
在线阅读 下载PDF
Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging
17
作者 Bandana Padhan Rajkumar Patel +4 位作者 Priyanka Bhowmik Ananya Roy Joyjyoti Das Yong Yu Madhumita Patel 《Journal of Polymer Materials》 2025年第2期411-433,共23页
The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering r... The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications. 展开更多
关键词 ANTIBIOFILM metal nanoparticles metal oxide nanoparticle biopolymer nanocomposites food packaging
在线阅读 下载PDF
Resection of a ganglioneuroma encasing major blood vessels using three-dimensional laparoscopy combined with organ suspension:A case report
18
作者 Guo-Zhen Wu Shen-Zhe Fang +1 位作者 Shi-An Yu Min Yu 《World Journal of Gastrointestinal Surgery》 2025年第8期467-475,共9页
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major... BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels. 展开更多
关键词 Ganglioneuromas Retroperitoneal three-dimensional laparoscopy Organ suspension Case report
暂未订购
Reconfigurable Three-Dimensional Thermal Dome
19
作者 Yuhong Zhou Fubao Yang +5 位作者 Liujun Xu Pengfei Zhuang Dong Wang Xiaoping Ouyang Ying Li Jiping Huang 《Engineering》 2025年第3期236-244,共9页
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t... Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields. 展开更多
关键词 Thermal domes Reconfigurable metamaterials three-dimensional invisibility
在线阅读 下载PDF
Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments
20
作者 Ilze Irbe Laura Andze Inese Filipova 《Journal of Renewable Materials》 2025年第11期2139-2154,共16页
Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites.This study investigates the development and characterization of su... Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites.This study investigates the development and characterization of sustainable egg packaging waste(EPW)biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder.Three formulations were prepared using EPW as the primary substrate,with and without the addition of hemp shives and sawdust as co-substrates.The composites were evaluated for granulometry,density,mechanical strength,hygroscopic behavior,thermal conductivity,and fire performance using cone calorimetry.Biocomposites,composed exclusively of egg packaging waste,exhibited favorable fire resistance,lower total heat release(THR)and total smoke release(TSR),extended time to ignition(TTI),reduced hygroscopicity,and higher flexural strength.Biocomposites,containing hemp shives,demonstrated improved compressive strength and thermal insulation but showed weaker fire resistance.Biocomposites,incorporating sawdust,showed intermediate properties with the longest flameout time(TTF)and highest heat release values.Overall,the results demonstrate that EPW-based biocomposites can be tailored through substrate composition to achieve desirable combinations of mechanical,thermal,and fire-retardant properties,highlighting their potential as sustainable alternatives to conventional syntheticmaterials in building and packaging applications. 展开更多
关键词 Egg packaging waste fungal mycelium BIOCOMPOSITES mechanical properties thermal conductivity fire resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部