期刊文献+
共找到133,267篇文章
< 1 2 250 >
每页显示 20 50 100
Three-Dimensional Numerical Simulations of the Effects of a Cold Water Surface on the Evolution and Propagation of Thunderstorms
1
作者 孔凡铀 黄美元 徐华英 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第3期261-272,共12页
The influences of large areas of semi-unbounded cold water surface on the evolution, propagation and precipitation production of thunderstorms are simulated by using a fully elastic three-dimensional numerical hailsto... The influences of large areas of semi-unbounded cold water surface on the evolution, propagation and precipitation production of thunderstorms are simulated by using a fully elastic three-dimensional numerical hailstorm model. Real sounding profiles for temperature, humidity and wind are employed. The model has successfully simulated the significant modification of the propagation path of thunderstorms near the cold water area. The path change can be either' along-bank' or' toward-bank', depending on the position of the storm system relative to convergence zone of the water-land circulation. The simulations also show that thunderstorms developing or propagating within the convergence zone of local circulation will be intensified and produce much heavier hail, whereas those over cold water surface or the air that has been cooled by the water will be strongly inhibited.The influence of the cold water surface on thunderstorm characters is largely dependent upon the direction and intensity of the low-level wind. 展开更多
关键词 THUNDERSTORM numerical simulation Water-land circulation Thunderstorm propagation
在线阅读 下载PDF
A three-dimensional CFD numerical simulation study on pressurized oxy-fuel gasification of poultry manure in an industrial-scale gasifier
2
作者 Qinwen Liu Guoqing Lian +4 位作者 Wenli Dong Yu Su Wei Quan Leong Chi-Hwa Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 2025年第5期115-127,共13页
As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pr... As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology. 展开更多
关键词 Oxy-fuel gasification Pressurized gasification Poultry manure Carbon negative CFD numerical simulation
在线阅读 下载PDF
Rockburst tendency prediction in a deeply buried tunnel based on numerical simulations
3
作者 HUO Yuxiang HUANG Jian +3 位作者 JU Nengpan ZHANG Min WANG Qingwu HU Yong 《Journal of Mountain Science》 2025年第4期1261-1273,共13页
Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a s... Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a suitable approach to predict the rockburst tendency at the preliminary stage becomes very important.In this study,an integrated methodology combining 3D initial stress inversion and rockburst tendency prediction was developed and subsequently applied to a case study of the Sangzhuling Tunnel on the Sichuan–Tibet Railway.The numerical modelling involved inverting the initial stress field using a multiple linear regression method.The tunnel excavation was simulated separately by FDM and DEM,based on a stress boundary condition from the inverted stress field.The comparative analysis demonstrates that the rockburst ratio calculated using DEM(76.70%)exhibits a slight increase compared to FDM(75.38%),and the rockburst location is consistent with the actual situation.This suggests that DEM is more suitable for simulating the stress redistribution during excavation in a jointed rock mass.The numerical simulation combined with the deviatoric stress approach effectively predicts rockburst tendency,meeting the engineering requirements.Despite its limitations,numerical simulation remains a reliable method for predicting rock bursts. 展开更多
关键词 Geostress inversion Rockburst tendency numerical simulation Deeply buried tunnel
原文传递
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
4
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
On the three-dimensionality and spanwise variations of cloud cavitation:A combined numerical and experimental study
5
作者 Hao Zhang Yun-qiao Liu Ben-long Wang 《Journal of Hydrodynamics》 2025年第3期437-448,共12页
Cloud cavitation that forms around a two-dimensional hydrofoil may exhibit three-dimensional characteristics.This study investigates the spanwise variations of cloud-cavitating flows through comprehensive analyses of ... Cloud cavitation that forms around a two-dimensional hydrofoil may exhibit three-dimensional characteristics.This study investigates the spanwise variations of cloud-cavitating flows through comprehensive analyses of both numerical results and experimental snapshots.Experiments were conducted in the cavitation tunnel,utilizing high-speed cameras to record the evolution of cavitation,while the cavitating flow of the same configuration was simulated using detached eddy simulation(DES).The three-dimensional shedding phenomena of cloud cavitation,characterized by spanwise variations,are observed in both numerical and experimental results,impacting on the oscillation of hydrodynamic forces.According to the investigation on the spatial-temporal evolution of flow field,two distinct patterns in terms of spanwise shedding of cloud cavitation,namely complete and incomplete shedding,are identified. 展开更多
关键词 Cavitating flow detached eddy simulation(DES) three-dimensional cavity shedding modal decomposition
原文传递
Thorough numerical simulations of silicon heterojunction solar cells focusing on the sun-side-doped layer
6
作者 Jiufang Han Yimeng Song +5 位作者 Xiran Yu Conghui Jiang Wenxin Wang Haiqiang Jia Chunhua Du Hong Chen 《Chinese Physics B》 2025年第11期575-582,共8页
To improve the photovoltaic conversion efficiency(PCE)of silicon heterojunction(SHJ)solar cells,this study focuses on optimizing the physical parameters of the sun-side-doped layer and proposes strategies to address t... To improve the photovoltaic conversion efficiency(PCE)of silicon heterojunction(SHJ)solar cells,this study focuses on optimizing the physical parameters of the sun-side-doped layer and proposes strategies to address the challenges posed by Fermi level pinning in wide bandgap designs.Using AFORS-HET simulations,we systematically investigate the effects of bandgap width,doping concentration,and defect state distribution on the energy band structure,interface electric field,and carrier transport dynamics.The results reveal that maintaining the Fermi level within 0.3 eV of the conduction band is essential for optimal device performance.A wider bandgap(>1.8 eV)enhances the utilization of short-wavelength light and significantly suppresses interface recombination,leading to an increase in short-circuit current density(J_(sc))by 0.8 mA/cm^(2).This benefit comes with a delicate balance between minimizing defect state density and improving doping efficiency.This study provides theoretical insights into the optimization of doped layer physical parameters and proposes practical solutions,including nano-crystallization and low-doping interface strategies,to improve the performance of SHJ solar cells and support industrial applications. 展开更多
关键词 silicon heterojunction(SHJ)solar cell AFORS-HET numerical simulation Fermi level pinning
原文传递
Visualization test and numerical simulations of 2D blasting crack propagation
7
作者 Shan Guo Manchao He Seokwon Jeon 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4871-4888,共18页
Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately c... Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation. 展开更多
关键词 2D blasting technology Non-explosive blasting Polymethyl methacrylate(PMMA) Visualization of crack propagation 3D numerical simulation
在线阅读 下载PDF
Experimental and Three-Dimensional Numerical Simulation of Phenomena Induced by Submerged Oblique Jet Scouring
8
作者 Hao Chen Xianbin Teng +2 位作者 Faxin Zhu Zhibin Zhang Jie Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1799-1821,共23页
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond... Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°. 展开更多
关键词 Submerged jet jet angle experimental study numerical simulation bed shear stress
在线阅读 下载PDF
Seismic responses and shattering cumulative effects of bedding parallel stepped rock slope:Model test and numerical simulation 被引量:1
9
作者 Chunlei Xin Fei Yang +2 位作者 Wenkai Feng Zhao Wang Wenhui Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2009-2030,共22页
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu... Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes. 展开更多
关键词 Rock slope stability Shaking table test numerical simulation Permanent displacement Acceleration amplification factor
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
10
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Numerical Simulation and Preparation of Micro-gear via Casting Forming Using Zr-based Amorphous Alloy
11
作者 Li Chunling Li Shaobing +2 位作者 Li Xiaocheng Li Chunyan Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第6期1435-1444,共10页
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit... A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness. 展开更多
关键词 Zr-based amorphous alloy MICRO-GEAR numerical simulation CASTING
原文传递
Numerical Simulation and Analysis of Heat Treatment Processes on AISI 1025 Steel Produced by Laser Engineered Net Shaping
12
作者 Elphas Tum Rehema Ndeda +3 位作者 James Mutua Raghupatruni Prasad Eyitao Olakanmi Sisa Pityana 《Modeling and Numerical Simulation of Material Science》 2025年第1期1-15,共15页
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ... Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%. 展开更多
关键词 Heat Treatment Residual Stresses HARDNESS Microstructure numerical simulation
在线阅读 下载PDF
Numerical simulation of the effect of hydrogen injection and oxygen enrichment interaction on PCI in a blast furnace
13
作者 Huan Liu Li Huang +3 位作者 Zhenyang Wang Alberto N.Conejo Jianliang Zhang Dawei Lan 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1551-1565,共15页
Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized... Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal. 展开更多
关键词 blast furnace HYDROGEN pulverized coal injection BURNOUT numerical simulation
在线阅读 下载PDF
Numerical simulation and experimental investigation of manufacturing route of directional casting super slab
14
作者 Ming Li Jun Fu +5 位作者 Neng Ren Biao Tao Alan Scholes Jun Li Jian-guo Li Hong-biao Dong 《Journal of Iron and Steel Research International》 2025年第3期659-670,共12页
We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolutio... We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions. 展开更多
关键词 Super slab Directional solidification MACROSEGREGATION numerical simulation Grain structure Steel
原文传递
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
15
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
Numerical simulation of inclusion transport behavior in vacuum induction melting process of nickel-based superalloy
16
作者 Long Zhao Zhong-qiu Liu +3 位作者 Ying-qi Zhang Tian Liang Ying-che Ma Bao-kuan Li 《Journal of Iron and Steel Research International》 2025年第11期4052-4067,共16页
Inclusions in nickel-based superalloys significantly influence their mechanical properties which limit the application and development.A two-dimensional axisymmetric model coupling electromagnetic flow,heat transfer,a... Inclusions in nickel-based superalloys significantly influence their mechanical properties which limit the application and development.A two-dimensional axisymmetric model coupling electromagnetic flow,heat transfer,and inclusions transport was developed using the finite element method.The effects of current intensity and frequency on the transport behavior of inclusions and removal rate during vacuum induction melting were investigated using this model.To verify the accuracy of the mathematical model,experiments were conducted using the vacuum induction furnace model VIF200.A comparison of the experimental results with the simulation results reveals an excellent agreement.Four eddies exist in the central section of the molten pool,with any two eddies flowing in opposite directions.The drag force exerted by the eddies causes the inclusions converge toward the four corners of the cut surface.Due to buoyancy,an increase in the particle size of inclusions makes it easier for them to be adsorbed by the free surface,a phenomenon that is particularly noticeable for inclusions with a particle size of 400μm.An increase in current intensity changes the adsorption interface of certain 400-μm inclusions from the free surface to the sidewall.Increasing both current intensity and frequency enhances the crucible removal rate of inclusions,with current intensity exerting a more significant effect,increasing the removal rate by approximately 1% for every 150 A.Upon completion of melting,the ingot is typically obtained by pouring or bottom pouring,and inclusions adsorbed to the free surface are difficult to separate.Therefore,higher current intensity and frequency should be employed during melting to enhance the crucible removal rate. 展开更多
关键词 INCLUSION Vacuum induction melting Nickel-based superalloy numerical simulation
原文传递
Fabrication of low-dimensional ternary Co_(3)ZnC/Co/CNT composites and numerical simulation of metamaterials for electromagnetic wave absorption
17
作者 Yi Liu Yahui Wang +7 位作者 Yongke Wang Chenglong Ding Qihang Ren Zongsheng Chen Zhigang Li Xiangyin Lv Xuesong Deng Jiaming Shi 《Nano Research》 2025年第11期1262-1275,共14页
The growing complexity of electromagnetic(EM)interference has driven significant demand for next-generation absorbers that combine lightweight,flexibility,and good electromagnetic attenuation capability.The low-dimens... The growing complexity of electromagnetic(EM)interference has driven significant demand for next-generation absorbers that combine lightweight,flexibility,and good electromagnetic attenuation capability.The low-dimensional ternary Co_(3)ZnC/Co/CNT composites with hollow structures have been synthesized through in-situ polymerization and high-temperature carbonization.The unique integration of low-dimensional nanostructures and multicomponent heterointerfaces confers exceptional EM absorption properties,achieving a reflection loss of−70.0 dB and significantly reducing radar cross section(RCS)scattering signals.It is particularly meaningful that the numerical simulation of Co_(3)ZnC/Co/CNT metama-terial reveals ultrawideband absorption performance,achieving 10.7 GHz(7.3-18.0 GHz)at a thickness of 4.5 mm and extending to 15 GHz(3.0-18.0 GHz)with a 10.5 mm.Moreover,the Co_(3)ZnC/Co/CNT composites retain meritorious EM absorption properties after flexible film formation,broadening their usability and application scope.These investigations will provide seminal insights encompassing theoretical validation,experimental synthesis,and practical application for the next generation of absorbers. 展开更多
关键词 electromagnetic absorption low-dimensional structures composites numerical simulation METAMATERIALS
原文传递
Numerical simulation of 3D supersonic asymmetric truncated nozzle based on k-kL algebraic stress model
18
作者 Gang WANG Shuai ZHANG +1 位作者 Jifa ZHANG Yao ZHENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期238-251,共14页
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule... The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges. 展开更多
关键词 Supersonic nozzle Turbulence model numerical simulation Performance analysis
原文传递
Numerical Simulation of Storm Surges Based on the Local Time-Stepping Algorithm
19
作者 LIU Guilin JI Tao +2 位作者 SUN Yinghao YU Pubing SONG Shichun 《Journal of Ocean University of China》 2025年第3期583-591,共9页
The local time-stepping(LTS)algorithm is an adaptive method that adjusts the time step by selecting suitable intervals for different regions based on the spatial scale of each cell and water depth and flow velocity be... The local time-stepping(LTS)algorithm is an adaptive method that adjusts the time step by selecting suitable intervals for different regions based on the spatial scale of each cell and water depth and flow velocity between cells.The method can be optimized by calculating the maximum power of two of the global time step increments in the domain,allowing the optimal time step to be approached throughout the grid.To verify the acceleration and accuracy of LTS in storm surge simulations,we developed a model to simulate astronomical storm surges along the southern coast of China.This model employs the shallow water equations as governing equations,numerical discretization using the finite volume method,and fluxes calculated by the Roe solver.By comparing the simulation results of the traditional global time-stepping algorithm with those of the LTS algorithm,we find that the latter fit the measured data better.Taking the calculation results of Typhoon Sally in 1996 as an example,we show that compared with the traditional global time-stepping algorithm,the LTS algorithm reduces computation time by 2.05 h and increases computation efficiency by 2.64 times while maintaining good accuracy. 展开更多
关键词 local time-stepping storm surge numerical simulation computational efficiency
在线阅读 下载PDF
Numerical Simulation on Heat Dissipation Characteristics of Electronic Components with Different Heat Sink Arrangements in High-Performance Server
20
作者 Zerui Chen Xin Wu +2 位作者 Houpeng Hu Yang Zhou Shang Yang 《Frontiers in Heat and Mass Transfer》 2025年第3期991-1011,共21页
As the integration of electronic components in high-performance servers increases,heat generation significantly impacts performance and raises failure rates.Therefore,heat dissipation has become a critical concern in ... As the integration of electronic components in high-performance servers increases,heat generation significantly impacts performance and raises failure rates.Therefore,heat dissipation has become a critical concern in electronic circuit design.This study uses numerical simulations to investigate the heat dissipation characteristics of electronic components in air-cooled servers.By adjusting airflow speed,heat sink configurations,and the arrangement of straight-fin heat sinks,we optimize heat dissipation performance and analyze the mechanisms at different airflow speeds.The results show that,at the same airflow speed,the temperature of the heat sink is lower than that of the electronic components,creating a temperature gradient that enhances heat transfer.Compared to a front-to-back arrangement of two straight-fin heat sinks,placing the heat sinks parallel to each other results in a lower maximum component temperature and better temperature uniformity.Heat sinks with fins significantly improve heat dissipation.The heat sink with semicylindrical fins on the rib surface provides the best cooling performance.Moreover,compared to natural convection,the maximum temperature of the electronic components decreases by 56.17%and 61%when the incoming flow velocity is 6 m/s with two parallel flat ribbed heat sinks and front-to-back arrangement,respectively. 展开更多
关键词 Electronic components numerical simulation heat dissipation structure optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部