期刊文献+
共找到22,952篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in spacewavenumber mixed domain 被引量:6
1
作者 Dai Shi-Kun Zhao Dong-Dong +3 位作者 Zhang Qian-Jiang Li Kun Chen Qing-Rui Wang Xu-Long 《Applied Geophysics》 SCIE CSCD 2018年第3期513-523,共11页
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ... In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain. 展开更多
关键词 Topography gravity ANOMALY space-wavenumber mixing DOMAIN three-dimensional numerical modeling
在线阅读 下载PDF
Three-Dimensional Numerical Modeling of an Ar-N_2 Plasma Arc Inside a Non-Transferred Torch 被引量:2
2
作者 B.SELVAN K.RAMACHANDRAN +2 位作者 K.P.SREEKUMAR T.K.THIYAGARAJAN P.V.ANANTHAPADMANABHAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第6期679-687,共9页
A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulat... A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulate the plasma arc. The argon-nitrogen plasma arc is simulated for different arc currents and gas flow rates of argon. Various combinations of arc core radius and arc length, which correspond to a given torch power, are predicted. A most feasible combination of the same, which corresponds to an actual physical situation of the arc inside the torch, is identified using the thermodynamic principle of minimum entropy production for a particular torch power. The effect of the arc current and gas flow rate on the plasma arc characteristics and torch efficiency is explained. The effect of the nitrogen content in the plasma gas on the torch power and efficiency is clearly detected. Predicted torch efficiencies are comparable to the measured ones and the effect of the arc current and gas flow rate on predicted and measured efficiencies is almost similar. The efficiency of the torch, cathode and anode losses and core temperature and velocity at the nozzle exit are reported for five different cases. 展开更多
关键词 plasma arc numerical modeling plasma torch minimum entropy production electro-thermal efficiency
在线阅读 下载PDF
A review of multiscale numerical modeling of rock mechanics and rock engineering
3
作者 Xindong Wei Zhe Li Gaofeng Zhao 《Deep Underground Science and Engineering》 2025年第3期382-405,共24页
Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock st... Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering. 展开更多
关键词 constitutive model multiscale modeling numerical method ROCK
原文传递
Multi-Phase Modeling for Vulnerability Detection & Patch Management: An Analysis Using Numerical Methods
4
作者 Adarsh Anand Div ya +1 位作者 Deepti Aggrawal Omar H.Alhazmi 《Computers, Materials & Continua》 2025年第7期1529-1544,共16页
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen... Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world. 展开更多
关键词 Learning phenomenon numerical method PATCHING two-phase modelling VULNERABILITY
在线阅读 下载PDF
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
5
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
6
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Three-dimensional numerical simulation of mixing patterns at open channel confluences
7
作者 Ali Aghazadegan Ali Shokri 《Water Science and Engineering》 2025年第2期236-246,共11页
Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ra... Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes. 展开更多
关键词 CONFLUENCE Mixing pattern numerical modelling Transverse vorticity Vertical vorticity
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
8
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Effect of He-Ar shielding gas composition on the arc physical properties of laser-arc hybrid fillet welding:numerical modeling
9
作者 Yaowei Wang Wen Liu +3 位作者 Peng Chen Wenyong Zhao Guoxiang Xu Qingxian Hu 《China Welding》 2025年第1期28-38,共11页
A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of ... A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar. 展开更多
关键词 He-Ar shielding gas components Laser-arc hybrid welding Plasma physical properties numerical model Aluminum alloy fillet welding
在线阅读 下载PDF
THREE-DIMENSIONAL NUMERICAL MODELING OF SECONDARY FLOWS IN A WIDE CURVED CHANNEL 被引量:9
10
作者 HUANG Sui-liang JLA Ya-fei +1 位作者 CHAN Hsun-Chuan WANG Sam S. Y. 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第6期758-766,共9页
Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels ha... Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels has an important bearing on sediment transport, riverbed evolution, and pollutant transport study. In this article, different turbulence closure schemes i.e., the mixing-length model and the k-ε model with different pressure solution techniques i. e., hydrostatic assumptions and dynamic pressure treatments are applied to study the helical secondary flows in an experiment curved channel. The agreements of vertically-averaged velocities between the simulated results obtained by using different turbulence models with different pressure solution techniques and the measured data are satisfactory. Their discrepancies with respect to surface elevations, superelevations and secondary flow patterns are discussed. 展开更多
关键词 3-D numerical modeling curved channels secondary flow patterns EXPERIMENTS
原文传递
Three-dimensional numerical modeling of single geocellreinforced sand 被引量:2
11
作者 Xiaoming YANG Jie HAN +1 位作者 Robert L.PARSONS Dov LESHCHINSKY 《Frontiers of Structural and Civil Engineering》 SCIE EI 2010年第2期233-240,共8页
This paper summarizes the development of a three-dimensional numerical model for analyzing single geocell-reinforced soil.In this model,the infill soil was modeled using the Duncan-Chang model,which can simulate non-l... This paper summarizes the development of a three-dimensional numerical model for analyzing single geocell-reinforced soil.In this model,the infill soil was modeled using the Duncan-Chang model,which can simulate non-linearity and stress-dependency of soil.Geocell was modeled using linearly elastic plate elements,which can carry both bending and membrane stresses.A linear interface stress-strain relationship with a MohrCoulomb yield criterion was adopted to model the interface friction between the geocell wall and the soil.By modeling the geocell and the soil separately,the interaction between the soil and the geocell can be accurately simulated.To verify this model,a plate load test was conducted in the laboratory,in which a 12-cmthick sand layer reinforced by a single geocell was subjected to a vertical load from a circular steel plate.The load-displacement curves and the horizontal tensile strain of the geocell were recorded during the test.A numerical model was created according to the setup of the load test.The numerical results compared reasonably well with the test data. 展开更多
关键词 geosynthetic reinforcement GEOCELL numerical model FLAC^(3D)
原文传递
Model experiments and numerical analysis of the influence of tunnel diameter on tunnel rockburst
12
作者 YAN Yaofeng XIA Yuanyou +5 位作者 ZHANG Lan HUANG Jian ZHANG Yuanhang YAN Minjia YUAN Zhouhao LIN Manqing 《Journal of Mountain Science》 2025年第10期3805-3817,共13页
With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rock... With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions. 展开更多
关键词 ROCKBURST Tunnel diameter model experiment numerical simulation Energy evolution
原文传递
Numerical simulation of 3D supersonic asymmetric truncated nozzle based on k-kL algebraic stress model
13
作者 Gang WANG Shuai ZHANG +1 位作者 Jifa ZHANG Yao ZHENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期238-251,共14页
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule... The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges. 展开更多
关键词 Supersonic nozzle Turbulence model numerical simulation Performance analysis
原文传递
Impact of the Sequential Bias Correction Scheme on the CMA-MESO Numerical Weather Prediction Model
14
作者 Yuxiao CHEN Liwen WANG +7 位作者 Daosheng XU Jeremy Cheuk-Hin LEUNG Yanan MA Shaojing ZHANG Jing CHEN Yi YANG Wenshou TIAN Banglin ZHANG 《Advances in Atmospheric Sciences》 2025年第8期1580-1596,共17页
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was... Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models. 展开更多
关键词 numerical weather prediction model error systematic bias bias correction SBCS
在线阅读 下载PDF
A stack-scale three-dimensional model to analyze the operation process of redox flow batteries
15
作者 Haoyao Rao Lyuming Pan +14 位作者 Fan Yang Honghao Qi Xiaoqian Xu Xiangchi Liu Yifei Zhu Can Yang Jia Liu Jiayou Ren Qinping Jian Changxiang He Yubai Li Puiki Leung Yuan Lei Wenjia Li Lei Wei 《Materials Reports(Energy)》 2025年第4期91-100,共10页
Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains in... Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains insufficiently optimized,demanding more profound mechanistic studies and engineering refinements.To address the difficulties in resolving the flow inhomogeneity at the stack scale,this study establishes a multi-physics field coupling model and analyzes the pressure distributions,flow rate differences,active substance concentration,and electrochemical characteristics.The results show that the uneven cell pressure distribution is a key factor affecting the consistency of the system performance,and the increase in the flow rate improves the reactant homogeneity,with both the average concentration and the uniformity factor increasing with the flow rate.In contrast,high current densities lead to an increased imbalance between electrochemical depletion and reactant replenishment,resulting in a significant decrease in reactant concentration in the under-ribs region.In addition,a higher flow rate can expand the high-current-density region where the stack operates efficiently.This study provides a theoretical basis for optimizing the design of the stack components. 展开更多
关键词 Redox flow battery numerical modeling Uniformity factor Mass transport Pump-based voltage efficiency
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
16
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding Two-phase flow numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
A Connectivity Model for the Numerical Simulation of Microgel Flooding in Low-Permeability Reservoirs
17
作者 Tao Wang Haiyang Yu +5 位作者 Jie Gao Fei Wang Xinlong Zhang Hao Yang Guirong Di Pengrun Wang 《Fluid Dynamics & Materials Processing》 2025年第5期1191-1200,共10页
Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig... Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability. 展开更多
关键词 Connectivity model chemical enhanced oil recovery microgel flooding numerical reservoir simulation fractured reservoirs
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
18
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
19
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling 被引量:1
20
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部