期刊文献+
共找到1,441篇文章
< 1 2 73 >
每页显示 20 50 100
High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy 被引量:4
1
作者 Yaning Li Ruijie Cao +6 位作者 Wei Ren Yunzhe Fu Yiwei Hou Suyi Zhong Karl Zhanghao Meiqi Li Peng Xi 《Advanced Photonics Nexus》 2024年第1期1-10,共10页
In recent years,notable progress has been achieved in both the hardware and algorithms of structured illumination microscopy(SIM).Nevertheless,the advancement of three-dimensional structured illumination microscopy(3D... In recent years,notable progress has been achieved in both the hardware and algorithms of structured illumination microscopy(SIM).Nevertheless,the advancement of three-dimensional structured illumination microscopy(3DSIM)has been impeded by challenges arising from the speed and intricacy of polarization modulation.We introduce a high-speed modulation 3DSIM system,leveraging the polarizationmaintaining and modulation capabilities of a digital micromirror device(DMD)in conjunction with an electrooptic modulator.The DMD-3DSIM system yields a twofold enhancement in both lateral(133 nm)and axial(300 nm)resolution compared to wide-field imaging and can acquire a data set comprising 29 sections of 1024 pixels×1024 pixels,with 15 ms exposure time and 6.75 s per volume.The versatility of the DMD-3DSIM approach was exemplified through the imaging of various specimens,including fluorescent beads,nuclear pores,microtubules,actin filaments,and mitochondria within cells,as well as plant and animal tissues.Notably,polarized 3DSIM elucidated the orientation of actin filaments.Furthermore,the implementation of diverse deconvolution algorithms further enhances 3D resolution.The DMD-based 3DSIM system presents a rapid and reliable methodology for investigating biomedical phenomena,boasting capabilities encompassing 3D superresolution,fast temporal resolution,and polarization imaging. 展开更多
关键词 digital micromirror device electro-optic modulation POLARIZATION three-dimensional structured illumination microscopy
在线阅读 下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module 被引量:1
2
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
在线阅读 下载PDF
Nanosizing enhancement of hydrogen storage performance and mechanism in Mg-based materials:Nano-substrate modulation,nano-catalyst construction,and nano-catalytic mechanisms
3
作者 Duode Zhao Xiaojiang Hou +8 位作者 Yu Ge Dongfeng Sun Danting Li Chenlu Wang Xinlei Xie Peixuan Zhu Xiaohui Ye Guoquan Suo Yanling Yang 《Journal of Energy Chemistry》 2025年第10期609-636,共28页
The magnesium-based materials are acknowledged as one of the most promising solid-state hydrogen storage mediums,attributed to their superior hydrogen storage capacity.Nevertheless,challenges such as sluggish kinetics... The magnesium-based materials are acknowledged as one of the most promising solid-state hydrogen storage mediums,attributed to their superior hydrogen storage capacity.Nevertheless,challenges such as sluggish kinetics,thermodynamic stability,inadequate cycling stability,and difficulties in activation impede the commercial utilization of Mg-based composites.Research indicates that reducing material dimensions to the nanoscale represents an efficacious strategy to address these issues.In this work,we systematically analyze the impact of nanosizing on Mg-based composites from three perspectives:nano-substrate modulation,nano-catalyst construction,and nano-catalytic mechanism.This analysis aims to provide guidance for the optimization and development of nanosizing strategies.For the regulation of nanosizing of Mg-based composites,the nanosizing of multi-element micro-alloyed Mg-rich systems,the integrated synthesis of multi-element multi-component nano-catalysts,and the coexistence of multiple nano-catalytic mechanisms are proposed in the light of the current state of the art research,artificial intelligence technology,and advanced characterization technology to achieve efficient,multidimensional,and simultaneous regulation of the hydrogen storage performance of Mg-based composites.This paper also envisions future directions and potential applications,emphasizing the importance of interdisciplinary approaches that integrate material science,chemistry,and computational modeling to overcome existing limitations and unlock the full potential of Mg-based hydrogen storage technologies. 展开更多
关键词 Nanosizing Mg-based materials Substrate modulation Catalyst Catalytic mechanism
在线阅读 下载PDF
Microscopic analysis of mechanical anisotropy and damage evolution of 3D printed rock-like samples under uniaxial compressive tests
4
作者 Yulong Shao Jingwei Yang +3 位作者 Jineon Kim Jae-Joon Song Juhyuk Moon Jianyong Han 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期688-704,共17页
Three-dimensional printing(3DP)offers valuable insight into the characterization of natural rocks and the verification of theoretical models due to its high reproducibility and accurate replication of complex defects ... Three-dimensional printing(3DP)offers valuable insight into the characterization of natural rocks and the verification of theoretical models due to its high reproducibility and accurate replication of complex defects such as cracks and pores.In this study,3DP gypsum samples with different printing directions were subjected to a series of uniaxial compression tests with in situ micro-computed tomography(micro-CT)scanning to quantitatively investigate their mechanical anisotropic properties and damage evolution characteristics.Based on the two-dimensional(2D)CT images obtained at different scanning steps,a novel void ratio variable was derived using the mean value and variance of CT intensity.Additionally,a constitutive model was formulated incorporating the proposed damage variable,utilizing the void ratio variable.The crack evolution and crack morphology of 3DP gypsum samples were obtained and analyzed using the 3D models reconstructed from the CT images.The results indicate that 3DP gypsum samples exhibit mechanical anisotropic characteristics similar to those found in naturally sedimentary rocks.The mechanical anisotropy is attributed to the bedding planes formed between adjacent layers and pillar-like structures along the printing direction formed by CaSO_(4)·2H_(2)O crystals of needle-like morphology.The mean gray intensity of the voids has a positive linear relationship with the threshold value,while the CT variance and void ratio have concave and convex relationships,respectively.The constitutive model can effectively match the stress–strain curves obtained from uniaxial compression experiments.This study provides comprehensive explanations of the failure modes and anisotropic mechanisms of 3DP gypsum samples,which is important for characterizing and understanding the failure mechanism and microstructural evolution of 3DP rocks when modeling natural rock behavior. 展开更多
关键词 Quantitative analysis three-dimensional printing(3DP) Gypsum samples In situ micro-computed tomography(micro-CT)scanning mechanical anisotropy Bedding planes Damage evolution
在线阅读 下载PDF
Three-dimensional cellular automata based particle flow simulations of mechanical properties of talus deposit 被引量:2
5
作者 Linwei Wang Weiya Xu Anquan Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期375-384,共10页
Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is dev... Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test. 展开更多
关键词 soil mechanics talus deposit: three-dimensional cellular automata (CA) particle flow mechanical properties
在线阅读 下载PDF
Boundary effect of toppling failure based on three-dimensional mechanical model
6
作者 CAI Jun-chao ZHENG Da +2 位作者 JU Neng-pan HUANG Run-qiu ZHAO Wei-hua 《Journal of Mountain Science》 SCIE CSCD 2022年第11期3314-3322,共9页
Previous researches on the mechanical model of toppling failure mainly concentrated on twodimensional mechanical model(TwDM) analysis. The TwDM analysis assumes the width of the slab beam is unit width without conside... Previous researches on the mechanical model of toppling failure mainly concentrated on twodimensional mechanical model(TwDM) analysis. The TwDM analysis assumes the width of the slab beam is unit width without considering the lateral constraint force. The assumed conditions are obviously different from the site conditions, thus there is a certain difference between the calculated results and the field work. A three-dimensional mechanical model(ThDM)of toppling failure was established, considering that the slab beam was mainly subject to self-weight, the frictional resistance of interlayer and lateral constraint force. Due to the progressive characteristics of toppling failure, the concept and the formula of the first fracture depth(FFD) of toppling was raised and constructed. The case study indicates that the ThDM is more effective and can be accurately used to calculate the toppling fracture depth of the slab beam. The FFD decreases proportionally with the increase of slab beam width. FFD grows fast when the slab beam width is less than 2.0 m and it tends to be stable when the slab beam width is above 2.0 m. The FFD decreases with the increase of the lateral constraint coefficient, indicating that the boundary condition of the free space is positively correlated with the stability and depth of toppling. This is a good explanation of the free space effect. This study provides a reference for the stability evaluation and prevention-control design of toppling slope in the future. 展开更多
关键词 Boundary effect Toppling failure three-dimensional mechanical model(ThDM) First fracture depth(FFD) Free face Slope failure
原文传递
Mechanical Integrity and Failure Analysis of Photovoltaic Modules under Simulated Snow Loads Using Pneumatic Airbag Setup
7
作者 Nouman Ali Shah Rizwan M. Gul Zafar Hayat Khan 《Journal of Power and Energy Engineering》 2022年第1期1-13,共13页
Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains si... Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains significantly lower than that of other renewable</span> energy sources such as wind and hydro. One of the critical elements affecting a photovoltaic module’s efficiency is the variety of external climatic conditions under which it is installed. In this work, the effect of simulated snow loads was evaluated on the performance of PV modules with different <span>types of cells and numbers of busbars. According to ASTM-1830 and IEC-1215</span> standards, a load of 5400 Pa was applied to the surface of PV modules for 3 hours. An indigenously developed pneumatic airbag test setup was used for the uniform application of this load throughout the test, which was validated by load cell and pressure gauge. Electroluminescence (EL) imaging and solar flash tests were performed before and after the application of load to characterize the performance and effect of load on PV modules. Based on these tests, the maxi<span>mum power output, efficiency, fill factor and series resistance were deter</span>mined. The results show that polycrystalline modules are the most likely to withstand the snow loads as compared to monocrystalline PV modules. A maximum drop of 32.13% in the power output and a 17.6% increase in series resistance were observed in the modules having more cracks. These findings demonstrated the efficacy of the newly established test setup and the potential of snow loads for reducing the overall performance of PV module. 展开更多
关键词 Photovoltaic modules Pneumatic Testing Setup mechanical Integrity Electroluminescence Testing Electrical Performance
在线阅读 下载PDF
Improvement of mechanical three-dimensional garage
8
作者 SHENG Jiasheng 《International English Education Research》 2019年第2期53-55,共3页
With the development of new urbanization,high-rise buildings stand tall,and all kinds of roads are busy,and the garage has become an indispensable necessity for people.The rise of the garage has also made the market d... With the development of new urbanization,high-rise buildings stand tall,and all kinds of roads are busy,and the garage has become an indispensable necessity for people.The rise of the garage has also made the market demand for it.The ordinary flat garage is no longer enough to meet the demand for parking.Therefore,the modem mechanical three-dimensional garage has become the darling of the society,many large shopping malls,commercial buildings,A variety of mechanical three-dimensional garages have been commonly used in hotels and viphouses.However,due to the late start of the mechanical three-dimensional garage,there are still many problems,such as slow operation of mechanical equipment,noisy mechanical noise,slow parking and other significant problems.Therefore,the contemporary mechanical three-dimensional garage is in urgent need of improvement.In this paper,the improvement analysis of the single-arm rotary vertical lifting type is carried out,and the mechanical principle knowledge is used to analyze the existing problems,so as to propose an improved solution. 展开更多
关键词 three-dimensional GARAGE mechanical PRINCIPLE
在线阅读 下载PDF
Thermo-Mechanical Analyses of the High Heat Flux Component for ITER Dual Functional Lithium Lead Test Blanket Module
9
作者 陈红丽 柏云清 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期236-240,共5页
The finite element code ANSYS is used to calculate the temperature and stress distributions for the first wall of DFLL-TBM (dual functional lithium lead-test blanket module), for testing in ITER. Preliminary analyse... The finite element code ANSYS is used to calculate the temperature and stress distributions for the first wall of DFLL-TBM (dual functional lithium lead-test blanket module), for testing in ITER. Preliminary analyses indicate that not only the low temperature design rules, the well-known 3Sin rules, are satisfied for the first wall, but the additional high temperature structural design criteria for the creep damage limits and creep-ratcheting limits are met as well. 展开更多
关键词 ITER test blanket module (TBM) liquid blanket thermo-mechanical analysis
在线阅读 下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits 被引量:2
10
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect three-dimensional stability Coordinated development distance
在线阅读 下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion 被引量:1
11
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
在线阅读 下载PDF
Limit analysis of roof collapse in tunnels under seepage forces condition with three-dimensional failure mechanism 被引量:10
12
作者 覃长兵 孙志彬 梁桥 《Journal of Central South University》 SCIE EI CAS 2013年第8期2314-2322,共9页
The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. Accordin... The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism. 展开更多
关键词 TUNNEL Hoek-Brown criterion three-dimensional collapse mechanism seepage force
在线阅读 下载PDF
The Effect of External Pressure on Mechanical Properties of Aquamarine Gemstone Using First Principles Studies
13
作者 Evarist Kahuluda Pulapa Ventkata Kanaka Rao Stanley Mwanga 《Journal of Minerals and Materials Characterization and Engineering》 2024年第5期237-246,共10页
Aquamarine gemstones are popular jewelry in the gemstone trade and are currently one of the important products in the world market because of their economic value. Aquamarine is a Beryllium Aluminium Silicate with the... Aquamarine gemstones are popular jewelry in the gemstone trade and are currently one of the important products in the world market because of their economic value. Aquamarine is a Beryllium Aluminium Silicate with the chemical formula Be3Al2Si6O18 and crystallizes in the hexagonal system with space group P6/mcc (192), and Tanzania has wide deposits of aquamarine gemstones. The quality of gemstone depends on its characteristic properties, including electronic, optical, and mechanical properties. In the present study, the effect of external pressure on mechanical properties including independent elastic constants and other related parameters such as Bulk modulus, Shear modulus, Young modulus, Poisson’s ratio, and Compressibility were studied. Density Function Theory in the forcite module of the material studies software on the external pressure within the range of 0 - 200 GPa on the optimized structure at electrostatic, Van der Waals and Ewald terms were used in this study. The results reveal that the independent elastic constants are mechanically unstable at 50 - 120 Gpa and are stable at 0 - 40 GPa and above 120 GPa, with the average bulk modulus, shear modulus, young modulus, Poisson’s ratio of 2319.9447, 652.3058, 1789.2236, and 0.26 respectively with the compressibility of 0.059921/TPa, this indicates that aquamarine gemstones are stable against strain and strongly against shear stress but opposing shear deformation. These values are within other crystalline materials found in the literature. This provides technological backing for the comprehensive valuation of mechanical properties, quality, and stability of gemstones available in Tanzania. 展开更多
关键词 Aquamarine Gemstones mechanical Properties External Pressure Biovia Material Studio Forcite module
在线阅读 下载PDF
Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution 被引量:1
14
作者 Mingxing Chen Zihe Du +8 位作者 Nian Liu Huijie Li Jing Qi Enbo Shangguan Jing Li Jiahao Cao Shujiao Yang Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 2025年第2期282-291,共10页
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy... Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts. 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYSIS Lattice oxygen mechanism High-valent metal species Cation and anion modulation
在线阅读 下载PDF
Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
15
作者 Wenfeng Xiang Xuan Liu +3 位作者 Xiaowei Huang Qingli Zhou Haizhong Guo Songqing Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期414-418,共5页
We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central l... We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices. 展开更多
关键词 high-aligned Ni nanowire arrays flexible THz-wave modulator mechanical control modulation depth
原文传递
Fabrication and formation mechanism of NbC_x-C three-dimensional netted fibers
16
作者 GuiyingXu JianbaoLi 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期121-126,共6页
Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (9... Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed. 展开更多
关键词 NbC_x-C three-dimensional netted fibers FABRICATION MORPHOLOGY formation mechanism
在线阅读 下载PDF
Simplified Inception Module Based Hadamard Attention Mechanism for Medical Image Classification
17
作者 Yanlin Jin Zhiming You Ningyin Cai 《Journal of Computer and Communications》 2023年第6期1-18,共18页
Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this art... Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this article, we propose a simplified inception module based Hadamard attention (SI + HA) mechanism for medical image classification. Specifically, we propose a new attention mechanism: Hadamard attention mechanism. It improves the accuracy of medical image classification without greatly increasing the complexity of the model. Meanwhile, we adopt a simplified inception module to improve the utilization of parameters. We use two medical image datasets to prove the superiority of our proposed method. In the BreakHis dataset, the AUCs of our method can reach 98.74%, 98.38%, 98.61% and 97.67% under the magnification factors of 40×, 100×, 200× and 400×, respectively. The accuracies can reach 95.67%, 94.17%, 94.53% and 94.12% under the magnification factors of 40×, 100×, 200× and 400×, respectively. In the KIMIA Path 960 dataset, the AUCs and accuracy of our method can reach 99.91% and 99.03%. It is superior to the currently popular methods and can significantly improve the effectiveness of medical image classification. 展开更多
关键词 Deep Learning Medical Image Classification Attention mechanism Inception module
在线阅读 下载PDF
Pressure-Dependent Thermal Network Model for Press-Pack Power Modules with Prognostics of Mechanical Status
18
作者 Yao Chang Yu Zhou +5 位作者 Ankang Zhu Haoze Luo Wuhua Li Chushan Li Francesco Iannuzzo Xiangning He 《CSEE Journal of Power and Energy Systems》 2025年第1期424-439,共16页
The press-pack power module with multi-chip layout has drawn increasing attention from industry and academia with its thermal analysis becoming an essential issue.However,the pressure-dependent thermal variables,such ... The press-pack power module with multi-chip layout has drawn increasing attention from industry and academia with its thermal analysis becoming an essential issue.However,the pressure-dependent thermal variables,such as thermal contact resistance and thermal coupling resistance,are often neglected.In this paper,a pressure-dependent thermal network model is developed to characterize the thermal performance and mechanical status of press-pack power modules.By including the thermal contact resistance and thermal coupling resistance as the function of pressure,the proposed model ensures a more precise thermo-mechanical evaluation inside the press-pack power module.The influence of pressure on self-heating effects and thermal coupling effects of power modules is studied using the knowledge of elastic mechanics.A press-pack prototype with variable pressure loads is assembled.Then,thermal experiments under different pressures on chips are conducted and the pressure-variable temperature responses of the thermal network are measured.Consequently,the feasibility of the proposed thermal network model is validated.A cost-effective prognostic method on the mechanical status of press-pack power module is also achieved. 展开更多
关键词 mechanical status press-pack power module pressure-dependent model thermal network
原文传递
Multimodal medical image fusion based on mask optimization and parallel attention mechanism
19
作者 DI Jing LIANG Chan +1 位作者 GUO Wenqing LIAN Jing 《Journal of Measurement Science and Instrumentation》 2025年第1期26-36,共11页
Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability... Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability to fully extract fused image information.Therefore,a multimodal medical image fusion method based on mask optimization and parallel attention mechanism was proposed to address the aforementioned issues.Firstly,it converted the entire image into a binary mask,and constructed a contour feature map to maximize the contour feature information of the image and a triple path network for image texture detail feature extraction and optimization.Secondly,a contrast enhancement module and a detail preservation module were proposed to enhance the overall brightness and texture details of the image.Afterwards,a parallel attention mechanism was constructed using channel features and spatial feature changes to fuse images and enhance the salient information of the fused images.Finally,a decoupling network composed of residual networks was set up to optimize the information between the fused image and the source image so as to reduce information loss in the fused image.Compared with nine high-level methods proposed in recent years,the seven objective evaluation indicators of our method have improved by 6%−31%,indicating that this method can obtain fusion results with clearer texture details,higher contrast,and smaller pixel differences between the fused image and the source image.It is superior to other comparison algorithms in both subjective and objective indicators. 展开更多
关键词 multimodal medical image fusion binary mask contrast enhancement module parallel attention mechanism decoupling network
在线阅读 下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部