期刊文献+
共找到159,009篇文章
< 1 2 250 >
每页显示 20 50 100
Bi-level hybrid local search approach for three-dimensional loading problem with balancing constraints 被引量:3
1
作者 ZHU Xiang LEI Ding-you 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期903-918,共16页
This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar... This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones. 展开更多
关键词 3D loading balancing constraints framed layout bi-level hybrid local search core block
在线阅读 下载PDF
THREE-DIMENSIONAL ELLIPTIC CRACK UNDER IMPACT LOADING 被引量:4
2
作者 Sun Zhufeng Wu Xiangfa Fan Tianyou 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第4期312-316,共5页
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat... The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact. 展开更多
关键词 dynamic loading three-dimensional elliptic crack finite element dynamicstress intensity factor
在线阅读 下载PDF
Study on Failure Mechanism and Bearing Capacity of Three-Dimensional Rectangular Footing Subjected to Combined Loading 被引量:8
3
作者 张其一 栾茂田 王忠涛 《China Ocean Engineering》 SCIE EI 2008年第2期313-330,共18页
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure m... This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis. ) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional ' swipe test'. 展开更多
关键词 rectangular footing upper bound limit analysis failure mechardsm failure envelope combined loading
在线阅读 下载PDF
Effect of proximal contact strength on the three-dimensional displacements of implant-supported cantilever fixed partial dentures under axial loading 被引量:7
4
作者 Zhen-zhen PENG Xin-min CHEN +2 位作者 Jun WANG Ai-jie LI Zu-jie XU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2013年第6期526-532,共7页
Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture(CFPD) under vertically concentrated loading with digital laser speck... Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture(CFPD) under vertically concentrated loading with digital laser speckle(DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3 000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implant supported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study. 展开更多
关键词 CANTILEVER fixed partial DENTURE Digital laser SPECKLE technique Contact strength three-dimensional DISPLACEMENT
原文传递
A HALF PLANE CRACK UNDER THREE-DIMENSIONAL COMBINED MODE IMPACT LOADING 被引量:1
5
作者 柳春图 李湘平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第1期40-48,共9页
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear li... The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented. 展开更多
关键词 impact line loads a half plane crack combined mode dynamic stress intensity factor
在线阅读 下载PDF
Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source 被引量:10
6
作者 Yong Xu Wen-Cai Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期494-502,共9页
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ... A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation. 展开更多
关键词 Hydrodynamic interaction - Wave loads ~Ship motions ~ Model test ~ three-dimensional translating-pulsating source ~ Underway replenishment
在线阅读 下载PDF
Damage indices for RC columns under three-dimensional excitation
7
作者 Zhang Haoyu Mao Chenxi Zhou Wei 《Earthquake Engineering and Engineering Vibration》 2025年第2期357-380,共24页
Damage indices are effective in quantifying structural seismic damage.Numerous response-based damage indices have been developed and validated through the hysteretic response of various experimental specimens.However,... Damage indices are effective in quantifying structural seismic damage.Numerous response-based damage indices have been developed and validated through the hysteretic response of various experimental specimens.However,the accuracy of these indices for evaluating damage of RC columns is challenged by fluctuating axial load and irregular horizontal loading paths from 3-D earthquake excitations.This study introduces D_(iem),a material-based damage model for RC columns under random bidirectional loads and variable axial forces.Section damage indices of the plastic hinge are calculated by integrating the damage indices of concrete and steel fiber elements,considering their distance to the centroid axis.The P-Δeffect index is defined,and the component failure index is calculated using a combination of these indices.A hysteretic simulation and D_(iem)damage analysis program for cantilever RC columns is developed using Fortran.Three RC columns tested under bidirectional hysteretic loading are simulated to calibrate the program.Parameter analysis of 1,638 RC columns is conducted to verify D_(iem)’s applicability.The results demonstrated that D_(iem)’s failure assessment aligns with the 80%residual criterion.D_(iem)analysis of a real seismic damaged RC column shows satisfactory agreement with post-earthquake damage assessment and illustrates significant damage differences between columns with and without axial load fluctuation. 展开更多
关键词 damage indices three-dimensional seismic loading material damage indices integration of element materials
在线阅读 下载PDF
Investigation of control effects of end-wall selfadaptive jet on three-dimensional corner separation of a highly loaded compressor cascade 被引量:1
8
作者 Hejian WANG Bo LIU +2 位作者 Xiaochen MAO Botao ZHANG Zonghao YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期109-126,共18页
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),... To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors. 展开更多
关键词 three-dimensional corner separation End-wall adaptive jet Total pressure loss Highly loaded compressor cascade Compressors
原文传递
Failure mechanisms of electronic detonators subjected to high impact loading in rock drilling and blasting 被引量:2
9
作者 Zhendong Leng Yong Fan +2 位作者 Wenbo Lu Qidong Gao Guangdong Yang 《International Journal of Coal Science & Technology》 2025年第1期214-227,共14页
In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and compreh... In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and comprehensive understanding of the failure mechanisms of electronic detonators subjected to impact loading is of great significance to the reliability design and field safety use of electronic detonators.The spatial distribution characteristics and failure modes of misfired electronic detonators under different application scenarios are statistically analysed.The results show that under high impact loads,electronic detonators will experience failure phenomena such as rupture of the fuse head,fracture of the bridge wire,falling off of the solder joint,chip module damage and insufficient initiation energy after deformation.The lack of impact resistance is the primary cause of misfire of electronic detonators.Combined with the underwater impact resistance test and the impact load test in the adjacent blasthole on site,the formulas of the impact failure probability of the electronic detonator under different stress‒strength distribution curves are deduced.The test and evaluation method of the impact resistance of electronic detonators based on stress‒strength interference theory is proposed.Furthermore,the impact failure model of electronic detonators considering the strength degradation effect under repeated random loads is established.On this basis,the failure mechanism of electronic detonators under different application environments,such as open-pit blasting and underground blasting,is revealed,which provides scientific theory and methods for the reliability analysis,design and type selection of electronic detonators in rock drilling and blasting. 展开更多
关键词 Rock blasting Electronic detonator Impact loading Stress‒strength interference theory Strength degradation effect
在线阅读 下载PDF
Three-Dimensional Analysis of Buried Steel Pipes under Moving Loads 被引量:2
10
作者 Bahram Navayi Neya Mehdi Alijani Ardeshir +1 位作者 Ali Aghajani Delavar Mohammad Zaman Roshan Bakhsh 《Open Journal of Geology》 2017年第1期1-11,共11页
The three-dimensional response of buried steel pipes under vehicle loads is investigated using the finite element analysis. The analysis is conducted using the finite element program ABAQUS. The effects of the vehicle... The three-dimensional response of buried steel pipes under vehicle loads is investigated using the finite element analysis. The analysis is conducted using the finite element program ABAQUS. The effects of the vehicle parameters, pipeline parameters and soil parameters on the response of the buried pipeline were discussed. The results indicate that the maximum principal stresses in a buried pipe under vehicle loads are significant for burial depths of less than 1 m. The maximum principal stresses of the buried pipeline decrease as the burial depth, vehicle velocity and surrounding soil’s elasticity modulus increase. For small burial depths, the stresses in buried pipes caused by vehicle motion in the direction normal to the pipe axis are more critical. However, the effects of motion direction are insignificant when the burial depth and the surrounding soil’s elasticity modulus increase. As the diameter of a buried pipe decreases, the maximum principal stresses increase. 展开更多
关键词 BURIED Steel PIPELINE VEHICLES load MOTION Direction NUMERICAL Simulation Stress
在线阅读 下载PDF
Three-dimensional line-of-sight-angle-constrained leader-following cooperative interception guidance law with prespecified impact time 被引量:1
11
作者 Hao YOU Xinlong CHANG Jiufen ZHAO 《Chinese Journal of Aeronautics》 2025年第1期491-506,共16页
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea... To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law. 展开更多
关键词 three-dimensional cooperative interception Leader-following missiles Prespecified impact time LOS-angle-constrained Fixed-time stability Global integral sliding mode
原文传递
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
12
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear loading parameter Constant normal stiffness(CNS)
在线阅读 下载PDF
Bi-directional interaction of joint shear strength in non-seismically designed corner RC beam-column connections under seismic loading 被引量:1
13
作者 Mohammad Amir Najafgholipour Negin Ahmadi rad Akanshu Sharma 《Earthquake Engineering and Engineering Vibration》 2025年第1期135-153,共19页
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa... Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well. 展开更多
关键词 beam-column joints joint shear failure bidirectional loading interaction curve finite element study
在线阅读 下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation 被引量:2
14
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale Fracture propagation three-dimensional reconstruction Crack-generated fines Fractal dimension
在线阅读 下载PDF
Three-dimensional models:from cell culture to Patient-Derived Organoid and its application to future liposarcoma research
15
作者 SAYUMI TAHARA SYDNEY RENTSCH +4 位作者 FERNANDA COSTAS CASAL DE FARIA PATRICIA SARCHET ROMA KARNA FEDERICA CALORE RAPHAEL E.POLLOCK 《Oncology Research》 SCIE 2025年第1期1-13,共13页
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ... Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma. 展开更多
关键词 Cell culture LIPOSARCOMA Patient-Derived Organoid(PDO) SPHEROID three-dimensional(3D)cell culture
暂未订购
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
16
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
在线阅读 下载PDF
High-resolution,three-dimensional magnetic resonance imaging axial load dynamic study improves diagnostics of the lumbar spine in clinical practice 被引量:4
17
作者 Tomasz Lorenc Marek Gołębiowski +1 位作者 Wojciech Michalski Wojciech Glinkowski 《World Journal of Orthopedics》 2022年第1期87-101,共15页
BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces... BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces can influence the choice of personalized treatment strategies.AIM To analyze the impact of axial load on the spinal canal’s size,intervertebral foramina,ligamenta flava and lumbosacral alignment.METHODS We assessed 90 patients using three-dimensional isotropic magnetic resonance imaging acquisition in a supine position with or without applying an axial compression load.Anatomical structures were measured in the lumbosacral region from L1 to S1 in lying and axially-loaded magnetic resonance images.A paired t test atα=0.05 was used to calculate the observed differences.RESULTS After axial loading,the dural sac area decreased significantly,by 5.2%on average(4.1%,6.2%,P<0.001).The intervertebral foramina decreased by 3.4%(2.7%,4.1%,P<0.001),except for L5-S1.Ligamenta flava increased by 3.8%(2.5%,5.2%,P<0.001),and the lumbosacral angle increased.CONCLUSION Axial load exacerbates the narrowing of the spinal canal and intervertebral foramina from L1-L2 to L4-L5.Cumulative compressive forces thicken ligamenta flava and exaggerate lumbar lordosis. 展开更多
关键词 Lumbar spine Low back pain Musculoskeletal disorder DIAGNOSIS Axial loading Magnetic resonance imaging Spine biomechanics
暂未订购
A Review on Modeling Environmental Loading Effects and Their Contributions to Nonlinear Variations of Global Navigation Satellite System Coordinate Time Series 被引量:1
18
作者 Zhao Li Weiping Jiang +3 位作者 Tonie van Dam Xiaowei Zou Qusen Chen Hua Chen 《Engineering》 2025年第4期26-37,共12页
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at... Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050. 展开更多
关键词 Environmental loading Global navigation satellite system Nonlinear variations Time series analysis Surface mass distribution Green’s function Spherical harmonic function
在线阅读 下载PDF
Three-Dimensional Water Quality Model Based on FVCOM for Total Load Control Management in Guan River Estuary,Northern Jiangsu Province 被引量:1
19
作者 ZHANG Li LIN Weibo +6 位作者 LI Keqiang SHENG Jianming WEI Aihong LUO Feng WANG Yan WANG Xiulin ZHANG Longjun 《Journal of Ocean University of China》 SCIE CAS 2016年第2期261-270,共10页
Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ... Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area. 展开更多
关键词 water quality model FVCOM total load control management Guan River Estuary Yellow Sea
在线阅读 下载PDF
A 3-Dimensional Cargo Loading Algorithm for the Conveyor-Type Loading System
20
作者 Hyeonbin Jeong Young Tae Ryu +1 位作者 Byung Duk Song Sang-Duck Lee 《Computer Modeling in Engineering & Sciences》 2025年第3期2739-2769,共31页
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre... This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management. 展开更多
关键词 3-dimensional loading automated loading system B2C logistics cargo loading algorithm conveyortype loading
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部