To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
Currently,the number of lightning casualties and casualty rates have significantly reduced in developed countries,but there has been no significant reduction in developing countries.On the one hand,this is due to the ...Currently,the number of lightning casualties and casualty rates have significantly reduced in developed countries,but there has been no significant reduction in developing countries.On the one hand,this is due to the high frequency of lightning;on the other hand,the vulnerability of people in developing countries is also an influencing factor.Through case analysis and summary,this paper expounds on lightning injury s mechanism and clinical manifestations.It points out that lightning injury is mainly related to heart problems and the impact on the nervous system,rather than burns,which usually cause fewer consequences.Medical treatment needs to pay attention to the order and principles of treatment.Implementing CPR and auxiliary AED is the most effective way to save lives.Attention should be paid to the practical and effective treatment and nursing of lightning stroke sequelae.Finally,combined with the situation of lightning casualties in China,the existing problems are put forward during the process of early treatment,post-hospital treatment,and nursing observation,which provides an objective basis for the cognition of the scientific nature of the lightning injury.展开更多
This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunde...This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunderstorms associated with negative TLFs in South China.The triggered-flash region(TFR)displays distinct stratiform cloud characteristics,including lower radar reflectivity heights and a predominance of ice crystals and dry snow above the 0℃ layer.In contrast,the thunderstorm convection core region(CCR)tends to have more graupel particles in the mixed-phase layers and exhibits an ice-water content peak approximately 3.4 times that of the TFR.The charge regions involved in discharges in TFRs exhibit a dipolar charge structure,with the-5℃ layer roughly dividing the upper positive and lower negative charge regions.Conversely,the CCRs feature a typical tripolar charge structure.The dominant dipole charge structure in the TFR results in an increase in the negative charge field below the negative charge region with height,providing a necessary condition for successfully triggering negative TLFs.Furthermore,the horizontal extent of TLFs is positively correlated with their duration and charge transfer.Regions where TLF channels with larger charge transfers propagate tend to have greater maximum radar reflectivity but lower average radar reflectivity compared to regions with TLFs with smaller charge transfer.展开更多
Based on the site investigation of a lightning stroke accident in a coal mine in Weiyuan County during a strong thunderstorm process on the night of August 10,2024,combined with the investigation data of the accident ...Based on the site investigation of a lightning stroke accident in a coal mine in Weiyuan County during a strong thunderstorm process on the night of August 10,2024,combined with the investigation data of the accident site,the causes of the lightning stroke accident were analyzed,and the corresponding rectification suggestions were put forward.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
Activity 1 Think about the following questions and write down your answers before reading the text.1.What are some common factors that usually cause damage to trees when they are struck by lightning?2.How might the un...Activity 1 Think about the following questions and write down your answers before reading the text.1.What are some common factors that usually cause damage to trees when they are struck by lightning?2.How might the unique characteristics of a tree contribute to its ability to survive a lightning strike?展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new...The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.展开更多
In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin...In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.展开更多
To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an...To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.展开更多
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems....Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.展开更多
The Van Allen radiation belts are doughnut-shaped zones surrounding Earth, filled with highly energetic charged particles whose sources or loss mechanisms have been investigated for decades. As for the inner belt, cos...The Van Allen radiation belts are doughnut-shaped zones surrounding Earth, filled with highly energetic charged particles whose sources or loss mechanisms have been investigated for decades. As for the inner belt, cosmic ray albedo neutron decay(CRAND),radial diffusion, and local acceleration have been considered principal sources of electrons, whereas protons are predominantly from CRAND and solar protons. In this article, lightning-induced neutrons from Earth's upper atmosphere are suggested as a possible source of protons and electrons in the inner radiation belt. These terrestrial neutrons can contribute to the inner belt population by undergoing nuclear decay. Several approaches are proposed and discussed to evaluate the potential contribution of lightning-induced neutrons to the inner belt, including magnitude estimation, Monte Carlo simulations, and in situ observations. This article discusses some avenues of further study to determine the contribution of lightning-induced neutrons to the inner radiation belt.展开更多
An in-situ plasma spark sintering(SPS)apparatus,coupled with laboratory X-ray microscopy,was uti-lized to three-dimensionally investigate the dynamic evolution process of 7055 aluminum alloy during SPS process.The inf...An in-situ plasma spark sintering(SPS)apparatus,coupled with laboratory X-ray microscopy,was uti-lized to three-dimensionally investigate the dynamic evolution process of 7055 aluminum alloy during SPS process.The influences of sintering temperatures and particle morphology on the sintering kinetics were discussed in detail.It was observed that elevating the sintering temperatures enhanced both the rate of densification and the final compactness of the alloy.Furthermore,three-dimensional quantitative analysis of pore evolution indicated that greater discrepancies in powder size between neighboring par-ticles facilitated pore elimination during sintering by increasing available interstitial spaces.Mechanistic analysis rationalized these observations by attributing the enhanced sintering kinetics to the greater par-ticle size disparity,which resulted in higher necking curvature and accelerated densification.The present study therefore provides a comprehensive three-dimensional in-situ quantitative analysis on the dynamic SPS process,and is expected to advance the current comprehension of sintering mechanisms at the mi-cron scale.展开更多
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
文摘Currently,the number of lightning casualties and casualty rates have significantly reduced in developed countries,but there has been no significant reduction in developing countries.On the one hand,this is due to the high frequency of lightning;on the other hand,the vulnerability of people in developing countries is also an influencing factor.Through case analysis and summary,this paper expounds on lightning injury s mechanism and clinical manifestations.It points out that lightning injury is mainly related to heart problems and the impact on the nervous system,rather than burns,which usually cause fewer consequences.Medical treatment needs to pay attention to the order and principles of treatment.Implementing CPR and auxiliary AED is the most effective way to save lives.Attention should be paid to the practical and effective treatment and nursing of lightning stroke sequelae.Finally,combined with the situation of lightning casualties in China,the existing problems are put forward during the process of early treatment,post-hospital treatment,and nursing observation,which provides an objective basis for the cognition of the scientific nature of the lightning injury.
基金funded by the Natural Science Foundation of China(Grant No.U2342215)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(Grant No.SCSF202302)。
文摘This study utilizes data from a 3D lightning location system,polarimetric radar,and current measurements from channels of triggered lightning flashes(TLFs)to analyze the structural characteristics of the parent thunderstorms associated with negative TLFs in South China.The triggered-flash region(TFR)displays distinct stratiform cloud characteristics,including lower radar reflectivity heights and a predominance of ice crystals and dry snow above the 0℃ layer.In contrast,the thunderstorm convection core region(CCR)tends to have more graupel particles in the mixed-phase layers and exhibits an ice-water content peak approximately 3.4 times that of the TFR.The charge regions involved in discharges in TFRs exhibit a dipolar charge structure,with the-5℃ layer roughly dividing the upper positive and lower negative charge regions.Conversely,the CCRs feature a typical tripolar charge structure.The dominant dipole charge structure in the TFR results in an increase in the negative charge field below the negative charge region with height,providing a necessary condition for successfully triggering negative TLFs.Furthermore,the horizontal extent of TLFs is positively correlated with their duration and charge transfer.Regions where TLF channels with larger charge transfers propagate tend to have greater maximum radar reflectivity but lower average radar reflectivity compared to regions with TLFs with smaller charge transfer.
文摘Based on the site investigation of a lightning stroke accident in a coal mine in Weiyuan County during a strong thunderstorm process on the night of August 10,2024,combined with the investigation data of the accident site,the causes of the lightning stroke accident were analyzed,and the corresponding rectification suggestions were put forward.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
文摘Activity 1 Think about the following questions and write down your answers before reading the text.1.What are some common factors that usually cause damage to trees when they are struck by lightning?2.How might the unique characteristics of a tree contribute to its ability to survive a lightning strike?
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
文摘The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.
基金support of the Fundamental Research Funds for the Central Universities(No.E2ET0411X2).
文摘In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.
基金financially supported by the National Natural Science Foundation of China(Nos.21876164 and U2030203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.
基金supported by the Central Guiding Local Science and Technology Development Fund of Shandong-Yellow River Basin(No.YDZX2023019)Shandong Natural Science Foundation of China(Nos.ZR2020QF067 and ZR2023QD073)+6 种基金the Discipline Cluster Research Project of Qingdao University“Deep mining and intelligent prediction of multimodal big data for marine ecological disasters”(No.20240604)sourced from the International Argo Program and the national programs that contribute to it(https://argo.ucsd.edu)the CMEMS(http://marine.copernicus.eu/)the CDS(https://cds.climate.copernicus.eu/)the EMODnet(https://www.emodnet-chemistry.eu/)obtained from the ERA5(https://www.ecmwf.int)derived from the Glob Colour Project(http://globcolour.info).
文摘Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.
基金supported by the National Natural Science Foundation of China (No. 42225405 and No. 42350710200)。
文摘The Van Allen radiation belts are doughnut-shaped zones surrounding Earth, filled with highly energetic charged particles whose sources or loss mechanisms have been investigated for decades. As for the inner belt, cosmic ray albedo neutron decay(CRAND),radial diffusion, and local acceleration have been considered principal sources of electrons, whereas protons are predominantly from CRAND and solar protons. In this article, lightning-induced neutrons from Earth's upper atmosphere are suggested as a possible source of protons and electrons in the inner radiation belt. These terrestrial neutrons can contribute to the inner belt population by undergoing nuclear decay. Several approaches are proposed and discussed to evaluate the potential contribution of lightning-induced neutrons to the inner belt, including magnitude estimation, Monte Carlo simulations, and in situ observations. This article discusses some avenues of further study to determine the contribution of lightning-induced neutrons to the inner radiation belt.
基金the National Key Research&Development Plan(Grant No.2021YFA1600702)the Qing Lan Project,Tuoyuan project of Nanjing Tech University(Grant No.20230113)the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘An in-situ plasma spark sintering(SPS)apparatus,coupled with laboratory X-ray microscopy,was uti-lized to three-dimensionally investigate the dynamic evolution process of 7055 aluminum alloy during SPS process.The influences of sintering temperatures and particle morphology on the sintering kinetics were discussed in detail.It was observed that elevating the sintering temperatures enhanced both the rate of densification and the final compactness of the alloy.Furthermore,three-dimensional quantitative analysis of pore evolution indicated that greater discrepancies in powder size between neighboring par-ticles facilitated pore elimination during sintering by increasing available interstitial spaces.Mechanistic analysis rationalized these observations by attributing the enhanced sintering kinetics to the greater par-ticle size disparity,which resulted in higher necking curvature and accelerated densification.The present study therefore provides a comprehensive three-dimensional in-situ quantitative analysis on the dynamic SPS process,and is expected to advance the current comprehension of sintering mechanisms at the mi-cron scale.