We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By consid...We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By considering the repulsive interactions between next-nearest-neighbor lattice sites,we further discover an exotic type of supersolid state,whose site occupancies show a stereoscopically arrayed and staggered distribution rather than checkerboard ordering.Intriguingly,if the physical observations of two neighboring layers were superimposed,they would give rise to a checkerboard configuration.This novel structure is convincingly induced by the simultaneous existence of nearest-neighbor and nextnearest-neighbor interactions.We also identify arrayed stripes in the ground state,as well as arrayed holes in the pattern of occupancies.展开更多
The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylind...The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.展开更多
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eu...We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.展开更多
In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing...In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear.展开更多
Flow and heat transfer characteristics during droplet impact on hot walls are pivotal for elucidating the mechanisms of spray cooling and exploring pathways for heat transfer enhancement.When the wall temperature exce...Flow and heat transfer characteristics during droplet impact on hot walls are pivotal for elucidating the mechanisms of spray cooling and exploring pathways for heat transfer enhancement.When the wall temperature exceeds the Leidenfrost point,a vapor film forms between the droplet and the wall,rendering the heat transfer process highly complex.Furthermore,for droplet impact on curved walls,the presence of curvature introduces additional factors that modify the spreading behavior of the droplet and necessitate in-depth analysis.Therefore,this work investigates the flow and heat transfer dynamics of droplet impact on hot planes and curved surfaces numerically via a pseudopotential multiple-relaxation-time Lattice Boltzmann model.The results reveal that the maximum spreading factor increases with the Weber number,diameter ratio,and Bond number,and marginally with the contact angle.Moreover,the time required to achieve the maximumspreading factor increaseswith the contact angle.This relationship exhibits a V-shaped trend due to gravitational effects.Furthermore,the total surface heat flux increases with theWeber number but decreases with the contact angle.The results advance the fundamental understanding of droplet impact dynamics on hot curved surfaces,providing practical insights for optimizing spray cooling performance and thermal management systems.展开更多
Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuse...Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume(SRV)in fracturing.To explore the mechanisms influencing effective fracture propagation and enhanced SRV,the L block was selected as the research object,with a comprehensive consideration of geological background,reservoir properties,and dynamic production data.By combining the discrete lattice method with numer-ical analysis and true triaxial experimental simulation,the fracture morphology of a single cluster and the propagation patterns of multiple clusters of complex fractures were obtained.Additionally,the optimization of temporary plugging timing and the fracture map under multiple factors were innovatively proposed.Results indicate that greater flow rate and viscosity can effectively overcome the stress shadow effect of the outermost fractures(1st and 6th clusters),increasing the fracture pressure of the single cluster and the equilibrium degree of multiple fracture propagation,thus forming a more complex fracture network.Moreover,when viscosity exceeds 45 pressure concentrates at fracture mPa⋅s,tips,promoting discontinuous propagation and reducing flow resistance.Conversely,increased gangue thickness and spacing between horizontal wells increase the vertical propagation pressure,suppressing fracture growth and reducing central flow velocity.This study provides a multi-cluster fracture propagation map for optimizing volumetric fracturing in coal seams and suggests that the optimal temporary plugging time significantly enhances the SRV.展开更多
A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path...A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method.展开更多
Physics-informed neural networks(PINNs)have shown considerable promise for performing numerical simulations in fluid mechanics.They provide mesh-free,end-to-end approaches by embedding physical laws into their loss fu...Physics-informed neural networks(PINNs)have shown considerable promise for performing numerical simulations in fluid mechanics.They provide mesh-free,end-to-end approaches by embedding physical laws into their loss functions.However,when addressing complex flow problems,PINNs still face some challenges such as activation saturation and vanishing gradients in deep network training,leading to slow convergence and insufficient prediction accuracy.We present physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization(T-PINN-LBM)to address these challenges.This approach fuses the mesoscopic lattice Boltzmann model with the automatic differentiation framework of PINNs.It also implements a tanh robust weight initialization method derived from fixed point analysis.This model effectively mitigates activation and gradient decay in deep networks,improving convergence speed and data efficiency in multiscale flow simulations.We validate the effectiveness of the model on the classical arithmetic example of lid-driven cavity flow.Compared to the traditional Xavier initialized PINN and PINN-LBM,T-PINNLBM reduces the mean absolute error(MAE)by one order of magnitude at the same network depth and maintains stable convergence in deeper networks.The results demonstrate that this model can accurately capture complex flow structures without prior data,providing a new feasible pathway for data-free driven fluid simulation.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (200...A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.展开更多
We study the topological properties of magnon excitations in a wide class of three-dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. Thes...We study the topological properties of magnon excitations in a wide class of three-dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The nodal ring degeneracy can be lifted by the Dzyaloshinskii- Moriya interactions to form two Weyl points with opposite charges. We explicitly discuss these physics in the simplest 3D honeycomb lattice and the hyperhoneycomb lattice, and show drumhead and are surface states in the nodal ring and Weyl phases, respectively, due to the bulk-boundary correspondence.展开更多
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ...The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.展开更多
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)...The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.展开更多
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ...The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.展开更多
A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herei...A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation. The finite element method is introduced for structural nonlinear statics analysis. The surface spline method is used for structure/aerodynamics coupling. The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented, and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test. The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic. However, the nonlinear methodology, which involves combining the structure finite element method with the non-planar vortex lattice method, could be used to solve the aeroelastic deformation with considerable accuracy, which is in fair agreement with the test results. Moreover, the nonlinear finite element method could consider complex structures. The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency. Consequently, the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice. It could be used in the preliminary stage and also in the detailed stage of aircraft design.展开更多
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa...The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.展开更多
The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zhe...The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.展开更多
An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for ...An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.展开更多
基金supported by the Hainan Provincial Natural Science Foundation of China(Grant No.525QN342)the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301).
文摘We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By considering the repulsive interactions between next-nearest-neighbor lattice sites,we further discover an exotic type of supersolid state,whose site occupancies show a stereoscopically arrayed and staggered distribution rather than checkerboard ordering.Intriguingly,if the physical observations of two neighboring layers were superimposed,they would give rise to a checkerboard configuration.This novel structure is convincingly induced by the simultaneous existence of nearest-neighbor and nextnearest-neighbor interactions.We also identify arrayed stripes in the ground state,as well as arrayed holes in the pattern of occupancies.
基金Project supported by the National Natural Science Foundation of China(Grant No10274006)Education Ministry of China(Grant No03011)
文摘The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.
基金supported by the National Natural Science Foundation of China(Grant No.11572062)the Fundamental Research Funds for the Central Universities,China(Grant No.CDJZR13248801)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13043)Key Laboratory of Functional Crystals and Laser Technology,TIPCChinese Academy of Sciences
文摘We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.
基金supported by National Natural Science Foundation of China under Grant No.51806116Guangdong Basic and Applied Basic Research Foundation under Grant No.2024A1515010927+2 种基金China Scholarship Council under Grant No.202306380288Humanities and Social Science Foundation of the Ministry of Education in China under Grant No.24YJCZH163Fundamental Research Funds for the Central Universities,Sun Yat-sen University under Grant No.24qnpy044。
文摘In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear.
基金funded by the National Natural Science Foundation of China,grant numbers 52276055 and 52476065.
文摘Flow and heat transfer characteristics during droplet impact on hot walls are pivotal for elucidating the mechanisms of spray cooling and exploring pathways for heat transfer enhancement.When the wall temperature exceeds the Leidenfrost point,a vapor film forms between the droplet and the wall,rendering the heat transfer process highly complex.Furthermore,for droplet impact on curved walls,the presence of curvature introduces additional factors that modify the spreading behavior of the droplet and necessitate in-depth analysis.Therefore,this work investigates the flow and heat transfer dynamics of droplet impact on hot planes and curved surfaces numerically via a pseudopotential multiple-relaxation-time Lattice Boltzmann model.The results reveal that the maximum spreading factor increases with the Weber number,diameter ratio,and Bond number,and marginally with the contact angle.Moreover,the time required to achieve the maximumspreading factor increaseswith the contact angle.This relationship exhibits a V-shaped trend due to gravitational effects.Furthermore,the total surface heat flux increases with theWeber number but decreases with the contact angle.The results advance the fundamental understanding of droplet impact dynamics on hot curved surfaces,providing practical insights for optimizing spray cooling performance and thermal management systems.
基金the project of the State Key Laboratory of Petroleum Resources and Engineering(No.PRE/open-2307)the CNOOC Research Institute(No.2020PFS-03).
文摘Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume(SRV)in fracturing.To explore the mechanisms influencing effective fracture propagation and enhanced SRV,the L block was selected as the research object,with a comprehensive consideration of geological background,reservoir properties,and dynamic production data.By combining the discrete lattice method with numer-ical analysis and true triaxial experimental simulation,the fracture morphology of a single cluster and the propagation patterns of multiple clusters of complex fractures were obtained.Additionally,the optimization of temporary plugging timing and the fracture map under multiple factors were innovatively proposed.Results indicate that greater flow rate and viscosity can effectively overcome the stress shadow effect of the outermost fractures(1st and 6th clusters),increasing the fracture pressure of the single cluster and the equilibrium degree of multiple fracture propagation,thus forming a more complex fracture network.Moreover,when viscosity exceeds 45 pressure concentrates at fracture mPa⋅s,tips,promoting discontinuous propagation and reducing flow resistance.Conversely,increased gangue thickness and spacing between horizontal wells increase the vertical propagation pressure,suppressing fracture growth and reducing central flow velocity.This study provides a multi-cluster fracture propagation map for optimizing volumetric fracturing in coal seams and suggests that the optimal temporary plugging time significantly enhances the SRV.
基金supported by the National Science Fund for Distinguished Young Scholars(52425211)BIT Research Fund Program for Young Scholars(XSQD-202201005).
文摘A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474453,12174085,and 12404530).
文摘Physics-informed neural networks(PINNs)have shown considerable promise for performing numerical simulations in fluid mechanics.They provide mesh-free,end-to-end approaches by embedding physical laws into their loss functions.However,when addressing complex flow problems,PINNs still face some challenges such as activation saturation and vanishing gradients in deep network training,leading to slow convergence and insufficient prediction accuracy.We present physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization(T-PINN-LBM)to address these challenges.This approach fuses the mesoscopic lattice Boltzmann model with the automatic differentiation framework of PINNs.It also implements a tanh robust weight initialization method derived from fixed point analysis.This model effectively mitigates activation and gradient decay in deep networks,improving convergence speed and data efficiency in multiscale flow simulations.We validate the effectiveness of the model on the classical arithmetic example of lid-driven cavity flow.Compared to the traditional Xavier initialized PINN and PINN-LBM,T-PINNLBM reduces the mean absolute error(MAE)by one order of magnitude at the same network depth and maintains stable convergence in deeper networks.The results demonstrate that this model can accurately capture complex flow structures without prior data,providing a new feasible pathway for data-free driven fluid simulation.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金Supported by the Science Foundations of Laboratory of Computational PhysicalScience Foundation of China Academy of Engineering Physics under Grant Nos. 2009A0102005, 2009B0101012National Natural Science Foundation under Grant Nos. 10775018, 11074300, and 1107521 of China
文摘A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921300the National Natural Science Foundation of China under Grant No 11334012the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07000000
文摘We study the topological properties of magnon excitations in a wide class of three-dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The nodal ring degeneracy can be lifted by the Dzyaloshinskii- Moriya interactions to form two Weyl points with opposite charges. We explicitly discuss these physics in the simplest 3D honeycomb lattice and the hyperhoneycomb lattice, and show drumhead and are surface states in the nodal ring and Weyl phases, respectively, due to the bulk-boundary correspondence.
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
文摘The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.
基金Supported by the Aeronautical Science Foundation of China(20111453012)the National Defense Pre-Research Foundation of China(9140A13040111HK0329)~~
文摘The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.
基金Supported by the Aeronautical Science Foundation of China(20061453020)Foundation for Basic Research of Northwestern Polytechnical University(03)~~
文摘The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.
基金National Natural Science Foundation of China(Nos.11172025,91116005)Research Fund for the Doctoral Program of Higher Education of China(No.20091102110015)
文摘A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation. The finite element method is introduced for structural nonlinear statics analysis. The surface spline method is used for structure/aerodynamics coupling. The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented, and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test. The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic. However, the nonlinear methodology, which involves combining the structure finite element method with the non-planar vortex lattice method, could be used to solve the aeroelastic deformation with considerable accuracy, which is in fair agreement with the test results. Moreover, the nonlinear finite element method could consider complex structures. The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency. Consequently, the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice. It could be used in the preliminary stage and also in the detailed stage of aircraft design.
文摘The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.
基金supported by the National Natural Science Foundation of China (11672081)
文摘The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.
基金Project supported by the Key Project of Chinese Ministry of Education (No.106015).
文摘An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.