Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
The Kuroshio Extension(KE)is one of the most eddy-energetic regions in the global ocean.However,most mesoscale eddy studies in the region are focused on surface eddies and the structure and characteristics of three-di...The Kuroshio Extension(KE)is one of the most eddy-energetic regions in the global ocean.However,most mesoscale eddy studies in the region are focused on surface eddies and the structure and characteristics of three-dimensional(3-D)eddies require additional research.In this study,we proposed a 3-D eddy identification and tracking algorithm based on pressure anomalies,similar to sea level anomalies(SLAs)for surface eddy identification.We applied this scheme to a 5-year(2008-2012)high-resolution numerical product to develop a 3-D eddy dataset in the KE.The reliability of the numerical product was verified by the 5-year temperature/salinity hydrological characteristics and surface eddy distribution.According to the 3-D eddy tracking dataset,the number of eddies decreased dramatically as the eddy existence-time increased and more anticyclonic eddies(AEs)had an existence-time longer than 1 week than cyclonic eddies(CEs).We presented daily variations in the 3-D structure of two 3-D eddy-tracking trajectories that exhibit a certain jump in depth and a shift toward the west and equator.In addition to the bowl,lens,and cone eddies that have been discovered by previous researchers,we found that there is a cylindrical eddy,and its eddy radii are almost consistent across all layers.CEs cause significant negative temperature anomalies,“negative-positive”salinity anomalies,and sinking current fields in the KE region,while AEs cause positive temperature anomalies,“positive-negative”salinity anomalies,and upward current fields.The four types of eddies have different effects on the temperature/salinity anomalies and current field distribution which are related to their structure.展开更多
The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by...The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ...展开更多
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens...An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature.展开更多
The altitudinal pattern of vegetation is usually identified by field surveys,however,these can only provide discrete data on a local mountain.Few studies identifying and analyzing the altitudinal vegetation pattern on...The altitudinal pattern of vegetation is usually identified by field surveys,however,these can only provide discrete data on a local mountain.Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available.This study selected central Inner Mongolia as the study area,presented a method for extracting vegetation patterns in altitudinal and horizontal directions.The data included a vegetation map at a 1∶1 000 000 scale and a digital elevation model at a 1∶250 000 scale.The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes.From low to high elevations,there were five vegetation types in the southern mountain flanks,including the montane steppe,broad-leaved forest,coniferous mixed forest,montane dwarf-scrub and sub-alpine shrub-meadow.Correspondingly,only four vegetation types were found in the northern flanks,except for the montane steppe.This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.展开更多
Objective: We constructed 3D-model of ONFH in computer according to three-dimensional computerized tomography (3D-CT) data. We determined the location and volume of necrosis to investigate its clinical efficacy. Metho...Objective: We constructed 3D-model of ONFH in computer according to three-dimensional computerized tomography (3D-CT) data. We determined the location and volume of necrosis to investigate its clinical efficacy. Method: Totally 92 hips (59 cases) with ONFH (44 males, 15 females) were included, with mean age of 37.5 years (range from 26 to 58). Totally 20 cases (35 hips) were induced by corticosteroid (CTSs), 31 (49 hips) induced by alcohol, 4 (4 hips) induced by trauma and 4 (4 hips) idiopathic. All the hips were categorized into stage ARCO II. Finally diagnosed by MRI, all hips were scanned by CT to acquire data in DICOM format. The images were imported into software to extract 3D-shape of femoral heads, necrotic foci, their volumes and distribution in each quadrant. Deviation of volumes between digital image and biopsy specimen was analyzed by SAS9.1 package. Correlativity between collapse and volume of necrosis under specific pathogeneses was also analyzed. Among the cases necessitating total hip arthroplasty (THA) due to advancing to ARCO III, we randomly selected 8 of them to perform 3D-CT scanning thrice prior to surgical operation. Total femoral heads harvested were torn asunder. Cubic capacity of femoral heads and necrotic foci were hereby measured and compared with those acquired from digital models. Result: Through the digital model, necrotic foci were found mainly locating within the super lateral portion of femoral head, coinciding with those observed in biopsy specimen. Average volumetric ratio of digitally acquired necrosis focus/femoral head in 58 collapsed hips was 36.8%. The ratio of the 34 hips without collapse was 17.3%. In collapsed femoral heads, the distribution of necrosis focus was 23.4% in quadrant 1 (q1), 23.6% in q2, 12.1% in q3, 14.4% in q4, 9.0% in q5, 11.8% in q6, 1.6% in q7 and 3.9% in q8. In femoral heads without collapse, the distribution was 34.2% in q1, 29.6% in q2, 11.8% in q3, 11.3% in q4, 6.0% in q5, 6.0% in q6, 0.5% in q7 and 0.4% in q8. As for the average cubic capacities of femoral heads and necrotic foci, those acquired from the digital model and biopsy specimen had no significant difference in matched-pairs test (t = -1.49, P = 0.179 for femoral heads and t = -1.52, P = 0.172 for necrotic foci). There was significant difference (F = 2.720, P = 0.035 P was respectively 0.0001 and 0.0005). Decision tree model showed that 94.6% (53/56) hips would progress into collapse if the volumetric ratio of necrotic tissue was over 23.48%. Otherwise, if distribution in q2 was over 45.13%, 83.3% (5/6) hips would progress into collapse. No collapse (0/30) would occur if the distribution of necrotic tissue in q2 was under 45.13%. Conclusion: Digital 3D-model reconstructed from CT scanning can precisely incarnate spatial orientation of necrotic foci in femoral head. Multinomial logistic regression and decision-making tree shows that volumetric ratio of necrotic tissues plays an important role in anticipating collapse of femoral head.展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffle...Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and...As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ...In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in...It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor...The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.展开更多
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve...To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.展开更多
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoo...Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.展开更多
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
文摘The Kuroshio Extension(KE)is one of the most eddy-energetic regions in the global ocean.However,most mesoscale eddy studies in the region are focused on surface eddies and the structure and characteristics of three-dimensional(3-D)eddies require additional research.In this study,we proposed a 3-D eddy identification and tracking algorithm based on pressure anomalies,similar to sea level anomalies(SLAs)for surface eddy identification.We applied this scheme to a 5-year(2008-2012)high-resolution numerical product to develop a 3-D eddy dataset in the KE.The reliability of the numerical product was verified by the 5-year temperature/salinity hydrological characteristics and surface eddy distribution.According to the 3-D eddy tracking dataset,the number of eddies decreased dramatically as the eddy existence-time increased and more anticyclonic eddies(AEs)had an existence-time longer than 1 week than cyclonic eddies(CEs).We presented daily variations in the 3-D structure of two 3-D eddy-tracking trajectories that exhibit a certain jump in depth and a shift toward the west and equator.In addition to the bowl,lens,and cone eddies that have been discovered by previous researchers,we found that there is a cylindrical eddy,and its eddy radii are almost consistent across all layers.CEs cause significant negative temperature anomalies,“negative-positive”salinity anomalies,and sinking current fields in the KE region,while AEs cause positive temperature anomalies,“positive-negative”salinity anomalies,and upward current fields.The four types of eddies have different effects on the temperature/salinity anomalies and current field distribution which are related to their structure.
文摘The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ...
基金Project supported by the National Natural Science Foundation of China(Nos.61876059 and U1501251)
文摘An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature.
基金Under the auspices of National Natural Science Foundation of China(No.41001111,41030528)
文摘The altitudinal pattern of vegetation is usually identified by field surveys,however,these can only provide discrete data on a local mountain.Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available.This study selected central Inner Mongolia as the study area,presented a method for extracting vegetation patterns in altitudinal and horizontal directions.The data included a vegetation map at a 1∶1 000 000 scale and a digital elevation model at a 1∶250 000 scale.The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes.From low to high elevations,there were five vegetation types in the southern mountain flanks,including the montane steppe,broad-leaved forest,coniferous mixed forest,montane dwarf-scrub and sub-alpine shrub-meadow.Correspondingly,only four vegetation types were found in the northern flanks,except for the montane steppe.This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.
文摘Objective: We constructed 3D-model of ONFH in computer according to three-dimensional computerized tomography (3D-CT) data. We determined the location and volume of necrosis to investigate its clinical efficacy. Method: Totally 92 hips (59 cases) with ONFH (44 males, 15 females) were included, with mean age of 37.5 years (range from 26 to 58). Totally 20 cases (35 hips) were induced by corticosteroid (CTSs), 31 (49 hips) induced by alcohol, 4 (4 hips) induced by trauma and 4 (4 hips) idiopathic. All the hips were categorized into stage ARCO II. Finally diagnosed by MRI, all hips were scanned by CT to acquire data in DICOM format. The images were imported into software to extract 3D-shape of femoral heads, necrotic foci, their volumes and distribution in each quadrant. Deviation of volumes between digital image and biopsy specimen was analyzed by SAS9.1 package. Correlativity between collapse and volume of necrosis under specific pathogeneses was also analyzed. Among the cases necessitating total hip arthroplasty (THA) due to advancing to ARCO III, we randomly selected 8 of them to perform 3D-CT scanning thrice prior to surgical operation. Total femoral heads harvested were torn asunder. Cubic capacity of femoral heads and necrotic foci were hereby measured and compared with those acquired from digital models. Result: Through the digital model, necrotic foci were found mainly locating within the super lateral portion of femoral head, coinciding with those observed in biopsy specimen. Average volumetric ratio of digitally acquired necrosis focus/femoral head in 58 collapsed hips was 36.8%. The ratio of the 34 hips without collapse was 17.3%. In collapsed femoral heads, the distribution of necrosis focus was 23.4% in quadrant 1 (q1), 23.6% in q2, 12.1% in q3, 14.4% in q4, 9.0% in q5, 11.8% in q6, 1.6% in q7 and 3.9% in q8. In femoral heads without collapse, the distribution was 34.2% in q1, 29.6% in q2, 11.8% in q3, 11.3% in q4, 6.0% in q5, 6.0% in q6, 0.5% in q7 and 0.4% in q8. As for the average cubic capacities of femoral heads and necrotic foci, those acquired from the digital model and biopsy specimen had no significant difference in matched-pairs test (t = -1.49, P = 0.179 for femoral heads and t = -1.52, P = 0.172 for necrotic foci). There was significant difference (F = 2.720, P = 0.035 P was respectively 0.0001 and 0.0005). Decision tree model showed that 94.6% (53/56) hips would progress into collapse if the volumetric ratio of necrotic tissue was over 23.48%. Otherwise, if distribution in q2 was over 45.13%, 83.3% (5/6) hips would progress into collapse. No collapse (0/30) would occur if the distribution of necrotic tissue in q2 was under 45.13%. Conclusion: Digital 3D-model reconstructed from CT scanning can precisely incarnate spatial orientation of necrotic foci in femoral head. Multinomial logistic regression and decision-making tree shows that volumetric ratio of necrotic tissues plays an important role in anticipating collapse of femoral head.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金CAPES and CNPq(Brazilian federal research agencies)for their financial support.
文摘Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the National Key R&D Program of China(2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and 2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
基金supported by the National Defense Fundamental Research Project(No.JCKY2022404C005)the Nuclear Energy Development Project(No.23ZG6106)+1 种基金the Sichuan Scientific and Technological Achievements Transfer and Transformation Demonstration Project(No.2023ZHCG0026)the Mianyang Applied Technology Research and Development Project(No.2021ZYZF1005)。
文摘In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金supported by the National Natural Science Foundation of China(42122017,41821002)the Independent Innovation Research Program of China University of Petroleum(East China)(21CX06001A).
文摘It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.
文摘The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.
基金The National Natural Science Foundation of China(No.52338011,52378291)Young Elite Scientists Sponsorship Program by CAST(No.2022-2024QNRC0101).
文摘To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
基金supported by the National Key Research and Development Program of China(No.2022YFB4300902)。
文摘Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.