In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited ...In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary su...With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.展开更多
BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising onco...BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.展开更多
This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated naviga...This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.展开更多
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste...An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.展开更多
For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature ...For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and ot...Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and other aspects.However,in environments with limited satellite signals such as urban canyons,tunnels,and indoor spaces,it is difficult to provide accurate and reliable positioning services only by satellite navigation.Multi-source sensor integrated navigation can effectively overcome the limitations of single-sensor navigation through the fusion of different types of sensor data such as Inertial Measurement Unit(IMU),vision sensor,and LiDAR,and provide more accurate,stable and robust navigation information in complex environments.We summarizes the research status of multi-source sensor integrated navigation technology,and focuses on the representative innovations and applications of integrated navigation and positioning technology by major domestic scientific research institutions in China during 2019—2023.展开更多
The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is...The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.展开更多
A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion...A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.展开更多
In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies an...In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.展开更多
Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
<strong>Introduction:</strong> Sonography is the most universally used imaging technique for planning and performing thermal ablation in Hepatocellular carcinoma patients due to its efficiency and safety. ...<strong>Introduction:</strong> Sonography is the most universally used imaging technique for planning and performing thermal ablation in Hepatocellular carcinoma patients due to its efficiency and safety. However, the presence of HCC nodules that are hardly visible on traditional sonography is a major drawback to its use during thermal ablation. Real-time image fusion (fusion imaging) or real-time virtual sonography is a new technology that has been developed. <strong>Aim: </strong>To determine the value of fusion/navigation guided percutaneous thermal ablation in the management of hepatocellular carcinoma that has poor conspicuity at conventional sonography. <strong>Subjects and Methods:</strong> This study included 70 HCC patients (BCLC A and B). Percutaneous radiofrequency ablation was done via real-time image fusion for 14 patients with poorly visible HCC nodules (study group), while Percutaneous radiofrequency ablation was done via traditional sonography for 56 patients with HCC nodules (control group). <strong>Results:</strong> The median time to reach the tumor was significantly shorter by using fusion navigation technique (<strong><em>P</em> = 0.034)</strong>. By using fusion navigation technique 92% of the lesions were completely ablated while 55% only were completely ablated by using ultrasonography (<strong><em>P</em> = 0.014</strong>). One year after the procedure , by using fusion navigation technique 92% of the patients had complete response and only 55% of the patients had complete response by using conventional ultrasonography (<strong><em>P</em></strong><strong> = 0.011</strong>). The survival distributions for both interventions were statistically significantly different, χ<sup>2</sup> = 10.12, <strong><em>P </em>= 0.001</strong>. <strong>Conclusion:</strong> Fusion imaging-guided percutaneous RFA is a reasonable and efficient treatment of patients with HCC undetectable by traditional ultrasonography.展开更多
On the basis of the basic principles of weighted fusion, Kalman filtering and BP neural networks, the basic principles of information fusion methods used in integrated navigation systems are expounded. Through the ana...On the basis of the basic principles of weighted fusion, Kalman filtering and BP neural networks, the basic principles of information fusion methods used in integrated navigation systems are expounded. Through the analysis of the basic principles, the as-sociation of information fusion methods commonly used in integrated navigation systems and information failure modes is obtained: the information fault mode of weighted fusion method The model is closely related to the specific weight allocation method, which depends on the fault mode of the sensor or sub-system in which the weight is dominant;the information fault mode of the Kalman filtering information fusion method is a continuous mutation fault corresponding to the nonlinear time interval of the system;the in-formation fault mode of the BP neural network method is gradual with time. The information failure mode of the BP neural network method is a slowly varying fault that gradually accumulates over time. Starting from the complexity associated with the information fusion method and the information failure mode, it is pointed out that in order to systematically express the relationship between the information fusion method and the information failure mode, further research can be carried out.展开更多
At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the stude...At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.展开更多
In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation res...In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.展开更多
Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper present...Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper presents an improved monocular visual inertial navigation architecture within the Multi-State Constraint Kalman Filter (MSCKF). In addition, to alleviate the initialization demands by appending enough stable poses in MSCKF, a rapid and robust Initialization MSCKF (I-MSCKF) navigation method is proposed in the paper. Based on the trifocal tensor and sigmapoint filter, the initialization of the integrated navigation can be accomplished within three consecutive visual frames. Thus, the proposed I-MSCKF method can improve the navigation performance when suffered from shocks at the initial stage. Moreover, the sigma-point filter is applied at initial stage to improve the accuracy for state estimation. The state vector generated at initial stage from the proposed method is consistent with MSCKF, and thus a seamless transition can be achieved between the initialization and the subsequent navigation in I-MSCKF. Finally, the experimental results show that the proposed I-MSCKF method can improve the robustness and accuracy for monocular visual inertial navigations.展开更多
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran...In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.展开更多
Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled po...Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.展开更多
基金supported by the National Natural Science Foundation of China(No.U2037602)。
文摘In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金Supported by National Natural Science Foundation of China,No.82070638 and No.81770621and JSPS KAKENHI,No.JP18H02866.
文摘With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
基金Supported by the Health Commission of Fuyang City,No.FY2021-18Bengbu Medical College of Bengbu City,No.2023byzd215the Health Commission Anhui Provence,No.AHWJ2023BAa20164.
文摘BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.
文摘This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.
基金supported by the Aviation Science Foundation(20070852009)
文摘An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.
基金supported by the National Natural Science Foundation of China(Nos.61873064 and 51375087)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2016139)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0073)。
文摘For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金National Key R&D Program of China(No.2021YFB2501102)。
文摘Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and other aspects.However,in environments with limited satellite signals such as urban canyons,tunnels,and indoor spaces,it is difficult to provide accurate and reliable positioning services only by satellite navigation.Multi-source sensor integrated navigation can effectively overcome the limitations of single-sensor navigation through the fusion of different types of sensor data such as Inertial Measurement Unit(IMU),vision sensor,and LiDAR,and provide more accurate,stable and robust navigation information in complex environments.We summarizes the research status of multi-source sensor integrated navigation technology,and focuses on the representative innovations and applications of integrated navigation and positioning technology by major domestic scientific research institutions in China during 2019—2023.
文摘The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.
文摘A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.
基金co-supported by the National Natural Science Foundation of China(Nos.92371201 and 52192633)the Natural Science Foundation of Shaanxi Province of China(No.2022JC-03)the Aeronautical Science Foundation of China(No.ASFC-20220019070002)。
文摘In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
文摘<strong>Introduction:</strong> Sonography is the most universally used imaging technique for planning and performing thermal ablation in Hepatocellular carcinoma patients due to its efficiency and safety. However, the presence of HCC nodules that are hardly visible on traditional sonography is a major drawback to its use during thermal ablation. Real-time image fusion (fusion imaging) or real-time virtual sonography is a new technology that has been developed. <strong>Aim: </strong>To determine the value of fusion/navigation guided percutaneous thermal ablation in the management of hepatocellular carcinoma that has poor conspicuity at conventional sonography. <strong>Subjects and Methods:</strong> This study included 70 HCC patients (BCLC A and B). Percutaneous radiofrequency ablation was done via real-time image fusion for 14 patients with poorly visible HCC nodules (study group), while Percutaneous radiofrequency ablation was done via traditional sonography for 56 patients with HCC nodules (control group). <strong>Results:</strong> The median time to reach the tumor was significantly shorter by using fusion navigation technique (<strong><em>P</em> = 0.034)</strong>. By using fusion navigation technique 92% of the lesions were completely ablated while 55% only were completely ablated by using ultrasonography (<strong><em>P</em> = 0.014</strong>). One year after the procedure , by using fusion navigation technique 92% of the patients had complete response and only 55% of the patients had complete response by using conventional ultrasonography (<strong><em>P</em></strong><strong> = 0.011</strong>). The survival distributions for both interventions were statistically significantly different, χ<sup>2</sup> = 10.12, <strong><em>P </em>= 0.001</strong>. <strong>Conclusion:</strong> Fusion imaging-guided percutaneous RFA is a reasonable and efficient treatment of patients with HCC undetectable by traditional ultrasonography.
文摘On the basis of the basic principles of weighted fusion, Kalman filtering and BP neural networks, the basic principles of information fusion methods used in integrated navigation systems are expounded. Through the analysis of the basic principles, the as-sociation of information fusion methods commonly used in integrated navigation systems and information failure modes is obtained: the information fault mode of weighted fusion method The model is closely related to the specific weight allocation method, which depends on the fault mode of the sensor or sub-system in which the weight is dominant;the information fault mode of the Kalman filtering information fusion method is a continuous mutation fault corresponding to the nonlinear time interval of the system;the in-formation fault mode of the BP neural network method is gradual with time. The information failure mode of the BP neural network method is a slowly varying fault that gradually accumulates over time. Starting from the complexity associated with the information fusion method and the information failure mode, it is pointed out that in order to systematically express the relationship between the information fusion method and the information failure mode, further research can be carried out.
基金the the National Key R&D Program of China(No.2018YFB1004901)the Independent Innovation Team Project of Jinan City(No.2019GXRC013).
文摘At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.
文摘In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.
基金the supports of the Beijing Key Laboratory of Digital Design&Manufacturethe Academic Excellence Foundation of Beihang University for Ph.D.Studentsthe MIIT(Ministry of Industry and Information Technology)Key Laboratory of Smart Manufacturing for High-end Aerospace Products
文摘Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper presents an improved monocular visual inertial navigation architecture within the Multi-State Constraint Kalman Filter (MSCKF). In addition, to alleviate the initialization demands by appending enough stable poses in MSCKF, a rapid and robust Initialization MSCKF (I-MSCKF) navigation method is proposed in the paper. Based on the trifocal tensor and sigmapoint filter, the initialization of the integrated navigation can be accomplished within three consecutive visual frames. Thus, the proposed I-MSCKF method can improve the navigation performance when suffered from shocks at the initial stage. Moreover, the sigma-point filter is applied at initial stage to improve the accuracy for state estimation. The state vector generated at initial stage from the proposed method is consistent with MSCKF, and thus a seamless transition can be achieved between the initialization and the subsequent navigation in I-MSCKF. Finally, the experimental results show that the proposed I-MSCKF method can improve the robustness and accuracy for monocular visual inertial navigations.
基金supported by the National Natural Science Foundationof China (60902055)
文摘In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.
基金Supported by the Guizhou Provincial Science and Technology Projects([2020]2Y044)the Science and Technology Projects of China Southern Power Grid Co.Ltd.(066600KK52170074)the National Natural Science Foundation of China(61473144)。
文摘Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.