To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an...To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model ...The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model for epoxy resin encapsulated nano HFTs, which aims to precisely predict the temperature distribution inside the transformer in combination with the finite element method(FEM). A magnetothermal bidirectional coupling 3DTN model is established by analyzing the thermal conduction between the core, windings, and epoxy resin, while also considering the convection and radiation heat transfer mechanisms on the surface of the epoxy resin. The model considers the impact of loss distribution in the core and windings on the temperature field and adopts a simplified 1/2 thermal network model to reduce computational complexity. Furthermore, the results of FEM are compared with experimental results to verify the accuracy of the 3DTN model in predicting the temperature rise of nano HFT. The results show that the 3DTN model reduces errors by an average of 5.25% over the traditional two-dimensional thermal network(2DTN) model, particularly for temperature distributions in the windings and core. This paper provides a temperature rise prediction method for the thermal design and offers a theoretical basis and engineering guidance for the optimization of their thermal management systems.展开更多
A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on...A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.展开更多
Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ...Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.展开更多
A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibi...A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibited well-defined 3DOM nanostructure, which consisted of extensive interconnecting networks of spherical voids. The effects of the calcination temperature and calcination time on the morphological characteristics and crystalline forms of the catalysts were systematically studied. The catalysts showed high catalytic activity for the combustion of soot. 3DOM 20% K-MCO-4h catalyst, in particular, showed the highest catalytic activity of all of the catalysts studied (e.g., Ts0 = 331 ~C and Smco2 = 95.3%). The occurrence of structural and synergistic effects among the K, Mn, and Ce atoms in the catalysts was favorable for enhancing their catalytic activity towards the combustion of diesel soot. Furthermore, the temperatures required for the complete combustion of the soot (〈400 ℃) were well within the exhaust temperature range (175-400 ℃), which means that the accumulated soot can be removed under the conditions of the diesel exhaust gas. These catalysts could therefore be used in numerous practical applications because they are easy to synthesize, exhibit high catalytic activity, and can be made from low cost materials.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic...Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.展开更多
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. ...Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.展开更多
This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congen...This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congenital uterine malformation confirmed hysteroscopically and/or laparoscopically. The patients were subjected to transvaginal two-dimensional ultrasound (2D TVUS) and 3D TVUS. The accuracy rate was compared between the two methods. The accuracy rate of 3D TVUS was (98.38%, 61/62), higher than that of 2D TVUS (80.65%, 50/62). 3D TVUS coronal plane imaging could demon- strate the internal shape of the endometrial cavity and the external contour of the uterine fundus. It al- lowed accurate measurement on the coronary plane, and could three-dimensionally show the image of cervical tube, thereby providing information for the diagnosis of some complex uterine malformation. 3D TVUS imaging can obtain comprehensive information of the uterus malformation, and it is superior to 2D TVUS for the diagnosis of congenital uterine malformations, especially complex uterine anomaly.展开更多
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d...The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in t...The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ...In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
Objective: The aim of our study was to evaluate the clinical results and acute side effects of late course three-dimensional conformal radiotherapy (3DCRT) for esophageal carcinoma. Methods: From January 2004 to O...Objective: The aim of our study was to evaluate the clinical results and acute side effects of late course three-dimensional conformal radiotherapy (3DCRT) for esophageal carcinoma. Methods: From January 2004 to October 2006, 70 patients with esophageal carcinoma received late course 3DCRT. Their clinical data were analyzed retrospectively. The short-term clinical results, acute side effects, local control rates and survival rates were evaluated. Results: The complete response rate was 62.9%, partial response rate was 35.7%, and the overall response rate was 98.6%. The 1-, 2-and 3-year local control rates were 77.1%, 51.4% and 45.7%, respectively. The 1-, 2-and 3-year overall survival rates were 75.7%, 54.3% and 38.6%, respectively. The median survival time was 26 months. Conclusion: The technique of late course 3DCRT is an effective treatment for esophageal carcinoma and tend to improve the overall survival rate.展开更多
Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstructi...Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstruction techniques. The typical morphology of them was of an elongated triangular pyramid. The length, width and thickness of ferrite allotriomorphs were measured on the basis of three-dimensional reconstructed images. The aspect ratio (length/width) of them was 4.5 on an average and scattered from 3 to 6. The measured sizes were smaller than calculated ones, which was probably attributed to solute drag-like effect of manganese in the alloy.展开更多
Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,...Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,are achieved according to the linear thin plate theory and the first-order piston theory as well as the complex modal analysis,and all solutions are in a simple and explicit form.The iterative Separation-of-Variable(iSOV)method proposed by the pre-sent authors is employed to obtain the highly accurate eigensolutions.The flutter mechanism is studied with the benefit of eigenvalue properties from mathematical senses.The effects of boundary conditions,chord-thickness ratios,aerodynamic damping,aspect ratios and in-plane loads on flut-ter properties are examined.The results are compared with those of Kantorovich method and Galerkin method,and also coincide well with analytical solutions in literature,verifying the accu-racy of the present closed-form results.It is revealed that,(A)the flutter characteristics are domi-nated by the cross section properties of panels in the direction of stream flow;(B)two types of flutter,called coupled-mode flutter and zero-frequency flutter which includes zero-frequency single-mode flutter and buckling,are observed;(C)boundary conditions and in-plane loads can affect both flutter boundary and flutter type;(D)the flutter behavior of 3D panel is similar to that of the two-dimensional(2D)panel if the aspect ratio is up to a certain value;(E)four to six modes should be used in the Galerkin method for accurate eigensolutions,and the results converge to that of Kantorovich method which uses the same mode functions in the direction perpendicular to the stream flow.The present analysis method can be used as a reference for other stability issues characterized by complex eigenvalues,and the highly closed-form solutions are useful in parameter designs and can also be taken as benchmarks for the validation of numerical methods.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21876164 and U2030203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金supported by the Project of the National Key Research and Development Program of China under Grant 2022YFB2404100。
文摘The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model for epoxy resin encapsulated nano HFTs, which aims to precisely predict the temperature distribution inside the transformer in combination with the finite element method(FEM). A magnetothermal bidirectional coupling 3DTN model is established by analyzing the thermal conduction between the core, windings, and epoxy resin, while also considering the convection and radiation heat transfer mechanisms on the surface of the epoxy resin. The model considers the impact of loss distribution in the core and windings on the temperature field and adopts a simplified 1/2 thermal network model to reduce computational complexity. Furthermore, the results of FEM are compared with experimental results to verify the accuracy of the 3DTN model in predicting the temperature rise of nano HFT. The results show that the 3DTN model reduces errors by an average of 5.25% over the traditional two-dimensional thermal network(2DTN) model, particularly for temperature distributions in the windings and core. This paper provides a temperature rise prediction method for the thermal design and offers a theoretical basis and engineering guidance for the optimization of their thermal management systems.
基金Project(50625101) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject supported by Graduate Independent Innovation Foundation of Shandong University(GIIFSDU),ChinaProject(51071097) supported by the National Natural Science Foundation of China
文摘A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.
基金supported by the National Natural Science Foundation of China(21325731,21221004 and 51478241)~~
文摘Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.
基金supported by the National Natural Science Foundation of China(21177160,21303263,21477164)Beijing Nova Program(Z141109001814072)+1 种基金Specialized Research Fund for the Doctoral Program of High Education of China(20130007120011)the Science Foundation of China University of Petroleum-Beijing(2462013YJRC13,2462013BJRC003)~~
文摘A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibited well-defined 3DOM nanostructure, which consisted of extensive interconnecting networks of spherical voids. The effects of the calcination temperature and calcination time on the morphological characteristics and crystalline forms of the catalysts were systematically studied. The catalysts showed high catalytic activity for the combustion of soot. 3DOM 20% K-MCO-4h catalyst, in particular, showed the highest catalytic activity of all of the catalysts studied (e.g., Ts0 = 331 ~C and Smco2 = 95.3%). The occurrence of structural and synergistic effects among the K, Mn, and Ce atoms in the catalysts was favorable for enhancing their catalytic activity towards the combustion of diesel soot. Furthermore, the temperatures required for the complete combustion of the soot (〈400 ℃) were well within the exhaust temperature range (175-400 ℃), which means that the accumulated soot can be removed under the conditions of the diesel exhaust gas. These catalysts could therefore be used in numerous practical applications because they are easy to synthesize, exhibit high catalytic activity, and can be made from low cost materials.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金This work was supported by the Brain Korea 2lProject and the Grallt of Post-Doc Program, KyungpookNational University (1999).
文摘Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
基金financial support of Distinguished scholars of yueqi (NO. 800015Z1179)National Science Fund subsidized project (51474220)Basic scientific research project of the CPC Central Committee (NO. 2009QZ03)
文摘Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.
文摘This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congenital uterine malformation confirmed hysteroscopically and/or laparoscopically. The patients were subjected to transvaginal two-dimensional ultrasound (2D TVUS) and 3D TVUS. The accuracy rate was compared between the two methods. The accuracy rate of 3D TVUS was (98.38%, 61/62), higher than that of 2D TVUS (80.65%, 50/62). 3D TVUS coronal plane imaging could demon- strate the internal shape of the endometrial cavity and the external contour of the uterine fundus. It al- lowed accurate measurement on the coronary plane, and could three-dimensionally show the image of cervical tube, thereby providing information for the diagnosis of some complex uterine malformation. 3D TVUS imaging can obtain comprehensive information of the uterus malformation, and it is superior to 2D TVUS for the diagnosis of congenital uterine malformations, especially complex uterine anomaly.
基金supported by the National Key R&D Program of China(No.2022YFB3104502)the National Natural Science Foundation of China(No.62301251)+2 种基金the Natural Science Foundation of Jiangsu Province of China under Project(No.BK20220883)the open research fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2024D04)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金supported by the National Science Foundation of China(41874117)the Second Tibetan Plateau Scientific Expedition and Research Program(SETP)(2019QZKK0901)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-ON-0309)。
文摘The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB731502)the National Natural Science Foundation of China(50978745)
文摘In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
文摘Objective: The aim of our study was to evaluate the clinical results and acute side effects of late course three-dimensional conformal radiotherapy (3DCRT) for esophageal carcinoma. Methods: From January 2004 to October 2006, 70 patients with esophageal carcinoma received late course 3DCRT. Their clinical data were analyzed retrospectively. The short-term clinical results, acute side effects, local control rates and survival rates were evaluated. Results: The complete response rate was 62.9%, partial response rate was 35.7%, and the overall response rate was 98.6%. The 1-, 2-and 3-year local control rates were 77.1%, 51.4% and 45.7%, respectively. The 1-, 2-and 3-year overall survival rates were 75.7%, 54.3% and 38.6%, respectively. The median survival time was 26 months. Conclusion: The technique of late course 3DCRT is an effective treatment for esophageal carcinoma and tend to improve the overall survival rate.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel (50734004)
文摘Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstruction techniques. The typical morphology of them was of an elongated triangular pyramid. The length, width and thickness of ferrite allotriomorphs were measured on the basis of three-dimensional reconstructed images. The aspect ratio (length/width) of them was 4.5 on an average and scattered from 3 to 6. The measured sizes were smaller than calculated ones, which was probably attributed to solute drag-like effect of manganese in the alloy.
基金supported by the National Natural Science Foundation of China(Nos.11872090,11672019,11472035)。
文摘Highly accurate closed-form eigensolutions for flutter of three-dimensional(3D)panel with arbitrary combinations of simply supported(S),glide(G),clamped(C)and free(F)boundary conditions(BCs),such as cantilever panels,are achieved according to the linear thin plate theory and the first-order piston theory as well as the complex modal analysis,and all solutions are in a simple and explicit form.The iterative Separation-of-Variable(iSOV)method proposed by the pre-sent authors is employed to obtain the highly accurate eigensolutions.The flutter mechanism is studied with the benefit of eigenvalue properties from mathematical senses.The effects of boundary conditions,chord-thickness ratios,aerodynamic damping,aspect ratios and in-plane loads on flut-ter properties are examined.The results are compared with those of Kantorovich method and Galerkin method,and also coincide well with analytical solutions in literature,verifying the accu-racy of the present closed-form results.It is revealed that,(A)the flutter characteristics are domi-nated by the cross section properties of panels in the direction of stream flow;(B)two types of flutter,called coupled-mode flutter and zero-frequency flutter which includes zero-frequency single-mode flutter and buckling,are observed;(C)boundary conditions and in-plane loads can affect both flutter boundary and flutter type;(D)the flutter behavior of 3D panel is similar to that of the two-dimensional(2D)panel if the aspect ratio is up to a certain value;(E)four to six modes should be used in the Galerkin method for accurate eigensolutions,and the results converge to that of Kantorovich method which uses the same mode functions in the direction perpendicular to the stream flow.The present analysis method can be used as a reference for other stability issues characterized by complex eigenvalues,and the highly closed-form solutions are useful in parameter designs and can also be taken as benchmarks for the validation of numerical methods.