Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile ...Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile sensors,accurately decoupling signals—specifically separating forces from directional orientation and temperature—remains a challenge thus resulting in failure to meet the advanced application requirements of robots.This study proposes,F3T,a multilayer soft sensor unit designed to achieve isolated measurements and mathematical decoupling of normal pressure,omnidirectional tangential forces,and temperature.We developed a circular coaxial magnetic film featuring a floating mount multilayer capacitor that facilitated the physical decoupling of normal and tangential forces in all directions.Additionally,we incorporated an ion gel-based temperature-sensing film into the tactile sensor.The proposed sensor was resilient to external pressures and deformations,and could measure temperature and significantly eliminate capacitor errors induced by environmental temperature changes.In conclusion,our novel design allowed for the decoupled measurement of multiple signals,laying the foundation for advancements in high-level robotic motion control,autonomous decision-making,and task planning.展开更多
Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgic...Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgical errors and damage to delicate tissues.The stringent requirements for the sensitivity and volume of force sensors in RMIS make the design and fabrication of such sensors a considerable challenge.Herein,we present a high-sensitivity three-dimensional(3D)force sensing module consisting of a micro-electro-mechanical piezoresistive sensor chip and a polydimethylsiloxane cap with pyramidal microstructures for force transmission.The sensor chip incorporates four cantilevers with a circular microhole at their fixed ends to concentrate stress in piezoresistive areas;the shape of the microhole was optimized to ensure an appropriate trade-off between high sensitivity and reliability.The proposed 3D force sensor showed more than twice higher sensitivity in the X-,Y-,and Z-axis directions than the sensor based on traditional cantilevers.Furthermore,the proposed sensor exhibited little hysteresis(<1.91%),good stability,and fast response(~30 ms).An artificial neural network was adopted for 3D force decoupling;this network accurately converted resistance changes into 3D forces,showing a prediction error of<2%.Furthermore,the proposed sensor was integrated into a robot to perform various clamping tasks,exhibiting good application potential for RMIS.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. Accordin...The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied ...Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.展开更多
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of...Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.展开更多
Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body ...Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force. This method can be used to solve the elasticity problems with body force without domain integral, which is inevitable by HBNM. To demonstrate the versatility and the fast convergence of this method, some numerical examples of 3-D elasticity problems with body forces are examined. The computational results show that the present method is effective and can be widely applied in solving practical engineering problems.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
As a thermosetting resin with excellent properties,epoxy resin is used in many areas such as electronics,transportation,aerospace,and other fields.However,its relatively low thermal conductivity limits its wide applic...As a thermosetting resin with excellent properties,epoxy resin is used in many areas such as electronics,transportation,aerospace,and other fields.However,its relatively low thermal conductivity limits its wide application in more demanding fields.Here,a three-dimensional carbon(3DC)network was prepared through NaCl template-assisted in situ chemical vapor deposition(CVD)and used to reinforce epoxy resin for enhancing its thermal conductivity.The 3DC was prepared with a molar ratio of sodium atom to carbon atom of 100:20,and argon atmosphere in CVD led to an optimal improvement in the thermal conductivity of epoxy resin.The thermal conductivity of epoxy resin increased by 18%when the filling content was 3 wt.%of 3DC network because of the high contact area,uniform dispersion,and enhanced formation of conductive paths with epoxy resin.As the amount of 3DC addition increases,the thermal conductivity of composites also increases.As an innovative exploration,the work presented in this paper is of great significance for the thermal conductivity application of epoxy resin in the future.展开更多
Particulate-reinforced metal matrix composites(PRMMCs)are difficult to machine due to the inclusion of hard,brittle reinforcing particles.Existing experimental investigations rarely reveal the complex material removal...Particulate-reinforced metal matrix composites(PRMMCs)are difficult to machine due to the inclusion of hard,brittle reinforcing particles.Existing experimental investigations rarely reveal the complex material removal mechanisms(MRMs)involved in the machining of PRMMCs.This paper develops a three-dimensional(3D)microstructure-based model for investigating the MRM and surface integrity of machined PRMMCs.To accurately mimic the actual microstructure of a PRMMC,polyhedrons were randomly distributed inside the matrix to represent irregular SiC particles.Particle fracture and matrix deformation and failure were taken into account.For the model’s capability comparison,a two-dimensional(2D)analysis was also conducted.Relevant cutting experiments showed that the established 3D model accurately predicted the material removal,chip morphology,machined surface finish,and cutting forces.It was found that the matrix-particle-tool interactions led to particle fractures,mainly in the primary shear and secondary deformation zones along the cutting path and beneath the machined surface.Particle fracture and dilodegment greatly influences the quality of a machined surface.It was also found that although a 2D model can reflect certain material removal features,its ability to predict microstructural variation is limited.展开更多
Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a ...Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a cell membrane,cytoplasm,and nucleus is established to study how particle geometry and position affect the three-dimensional ARF,and its results agree well with finite-element numerical results.The microsphere can be moved relative to the beam axis by changing its structure and position in the beam,and the axial ARF increases with increasing outer-shell thickness and core size.This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.展开更多
The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engin...The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.展开更多
The stability of an isothermal thin disk with three-dimensionalmagnetic fields and radial viscosity force is examined in this paper. We findthat the radial viscous force has no influence on stability of viscous modes....The stability of an isothermal thin disk with three-dimensionalmagnetic fields and radial viscosity force is examined in this paper. We findthat the radial viscous force has no influence on stability of viscous modes. Butthere are more influence on the stability of magneto-acoustic modes, which isrelated to the perturbation wavelenth and different parts of disc .Finally, weuse our model to explain the long term variability of Quasar 3C345.展开更多
The steady axis-symmetrical atmosphere dynamical equations are used for describing spiral structure of tropical cyclones under four-force (pressure gradient force, Coriolis force, centrifugal force, and friction forc...The steady axis-symmetrical atmosphere dynamical equations are used for describing spiral structure of tropical cyclones under four-force (pressure gradient force, Coriolis force, centrifugal force, and friction force) balance, and the dynamical systems of three-dimensional (3D) velocity field are introduced. The qualitative analysis of the dynamical system shows that there are down 3D spiral structures in eye of tropical cyclone and tropical cyclone is 3D counterclockwise up spiral structure. These results are consistent with the observed tropical cyclone on the weather map.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
基金support by Hong Kong RGC General Research Fund(16217824,16213825,16203923,and 16217824)National Natural Science Foundation of China(N_HKUST638/23)+1 种基金Research Grants Council Joint Research Scheme(62361166630)Guangdong Basic and Applied Basic Research Foundation(2023B1515130007).
文摘Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile sensors,accurately decoupling signals—specifically separating forces from directional orientation and temperature—remains a challenge thus resulting in failure to meet the advanced application requirements of robots.This study proposes,F3T,a multilayer soft sensor unit designed to achieve isolated measurements and mathematical decoupling of normal pressure,omnidirectional tangential forces,and temperature.We developed a circular coaxial magnetic film featuring a floating mount multilayer capacitor that facilitated the physical decoupling of normal and tangential forces in all directions.Additionally,we incorporated an ion gel-based temperature-sensing film into the tactile sensor.The proposed sensor was resilient to external pressures and deformations,and could measure temperature and significantly eliminate capacitor errors induced by environmental temperature changes.In conclusion,our novel design allowed for the decoupled measurement of multiple signals,laying the foundation for advancements in high-level robotic motion control,autonomous decision-making,and task planning.
基金supported by the National Natural Science Foundation of China(Grant No.62401385)the Natural Science Foundation of Jiangsu Province(Grant No.BK20240803)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.24KJB460025)the Open Fund of State Key Laboratory of Precision Measurement Technology and Instruments(Grant No.Pilab2413)。
文摘Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgical errors and damage to delicate tissues.The stringent requirements for the sensitivity and volume of force sensors in RMIS make the design and fabrication of such sensors a considerable challenge.Herein,we present a high-sensitivity three-dimensional(3D)force sensing module consisting of a micro-electro-mechanical piezoresistive sensor chip and a polydimethylsiloxane cap with pyramidal microstructures for force transmission.The sensor chip incorporates four cantilevers with a circular microhole at their fixed ends to concentrate stress in piezoresistive areas;the shape of the microhole was optimized to ensure an appropriate trade-off between high sensitivity and reliability.The proposed 3D force sensor showed more than twice higher sensitivity in the X-,Y-,and Z-axis directions than the sensor based on traditional cantilevers.Furthermore,the proposed sensor exhibited little hysteresis(<1.91%),good stability,and fast response(~30 ms).An artificial neural network was adopted for 3D force decoupling;this network accurately converted resistance changes into 3D forces,showing a prediction error of<2%.Furthermore,the proposed sensor was integrated into a robot to perform various clamping tasks,exhibiting good application potential for RMIS.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProject(51178468) supported by the National Natural Science Foundation of ChinaProject(2013zzts235) supported by Innovation Fund of Central South University of China
文摘The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-422)National Natural Science Foundation of China (No 40701059)
文摘Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.
基金Projects(51278382,51479050)supported by the National Natural Science Foundation of ChinaProject(2015CB057901)supported by the National Key Basic Research Program of China+3 种基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2014B06814)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B13024)supported by the"111"ProjectProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earthrock Dam of the Ministry of Water Resources,China
文摘Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
文摘Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force. This method can be used to solve the elasticity problems with body force without domain integral, which is inevitable by HBNM. To demonstrate the versatility and the fast convergence of this method, some numerical examples of 3-D elasticity problems with body forces are examined. The computational results show that the present method is effective and can be widely applied in solving practical engineering problems.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金the Key Projects of Tianjin Natural Science Foundation(No.16ZXCLGX00130).
文摘As a thermosetting resin with excellent properties,epoxy resin is used in many areas such as electronics,transportation,aerospace,and other fields.However,its relatively low thermal conductivity limits its wide application in more demanding fields.Here,a three-dimensional carbon(3DC)network was prepared through NaCl template-assisted in situ chemical vapor deposition(CVD)and used to reinforce epoxy resin for enhancing its thermal conductivity.The 3DC was prepared with a molar ratio of sodium atom to carbon atom of 100:20,and argon atmosphere in CVD led to an optimal improvement in the thermal conductivity of epoxy resin.The thermal conductivity of epoxy resin increased by 18%when the filling content was 3 wt.%of 3DC network because of the high contact area,uniform dispersion,and enhanced formation of conductive paths with epoxy resin.As the amount of 3DC addition increases,the thermal conductivity of composites also increases.As an innovative exploration,the work presented in this paper is of great significance for the thermal conductivity application of epoxy resin in the future.
文摘Particulate-reinforced metal matrix composites(PRMMCs)are difficult to machine due to the inclusion of hard,brittle reinforcing particles.Existing experimental investigations rarely reveal the complex material removal mechanisms(MRMs)involved in the machining of PRMMCs.This paper develops a three-dimensional(3D)microstructure-based model for investigating the MRM and surface integrity of machined PRMMCs.To accurately mimic the actual microstructure of a PRMMC,polyhedrons were randomly distributed inside the matrix to represent irregular SiC particles.Particle fracture and matrix deformation and failure were taken into account.For the model’s capability comparison,a two-dimensional(2D)analysis was also conducted.Relevant cutting experiments showed that the established 3D model accurately predicted the material removal,chip morphology,machined surface finish,and cutting forces.It was found that the matrix-particle-tool interactions led to particle fractures,mainly in the primary shear and secondary deformation zones along the cutting path and beneath the machined surface.Particle fracture and dilodegment greatly influences the quality of a machined surface.It was also found that although a 2D model can reflect certain material removal features,its ability to predict microstructural variation is limited.
基金supported by the National Natural Science Foundation of China (Grant No.11874252)the Fundamental Research Funds for the Central Universities (Grant No.2020TS029).
文摘Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a cell membrane,cytoplasm,and nucleus is established to study how particle geometry and position affect the three-dimensional ARF,and its results agree well with finite-element numerical results.The microsphere can be moved relative to the beam axis by changing its structure and position in the beam,and the axial ARF increases with increasing outer-shell thickness and core size.This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.
基金support of the National Natural Science Foundation of China(12072011).
文摘The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.
基金supported by the National Nature Science Foundationthe National Climbing Programme on the Fundamental Research of china
文摘The stability of an isothermal thin disk with three-dimensionalmagnetic fields and radial viscosity force is examined in this paper. We findthat the radial viscous force has no influence on stability of viscous modes. Butthere are more influence on the stability of magneto-acoustic modes, which isrelated to the perturbation wavelenth and different parts of disc .Finally, weuse our model to explain the long term variability of Quasar 3C345.
基金supported by the National Natural Science Foundation of China(Granted No.40975027)
文摘The steady axis-symmetrical atmosphere dynamical equations are used for describing spiral structure of tropical cyclones under four-force (pressure gradient force, Coriolis force, centrifugal force, and friction force) balance, and the dynamical systems of three-dimensional (3D) velocity field are introduced. The qualitative analysis of the dynamical system shows that there are down 3D spiral structures in eye of tropical cyclone and tropical cyclone is 3D counterclockwise up spiral structure. These results are consistent with the observed tropical cyclone on the weather map.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.