期刊文献+
共找到42,435篇文章
< 1 2 250 >
每页显示 20 50 100
Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method 被引量:3
1
作者 王艳 谢英才 +1 位作者 张淑仪 兰晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期468-473,共6页
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ... Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates. 展开更多
关键词 surface acoustic wave ZnO films electromechanical coupling coefficient temperature coefficientof frequency 3D finite element method
原文传递
A MIXED FINITE ELEMENT AND UPWIND MIXED FINITE ELEMENT MULTI-STEP METHOD FOR THE THREE-DIMENSIONAL POSITIVE SEMI-DEFINITE DARCY-FORCHHEIMER MISCIBLE DISPLACEMENT PROBLEM
2
作者 Yirang YUAN Changfeng LI +1 位作者 Huailing SONG Tongjun SUN 《Acta Mathematica Scientia》 2025年第2期715-736,共22页
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e... In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application. 展开更多
关键词 Darcy-Forchheimer fow three-dimensional positive semi-definite problem upwind mixed finite element multi-step method conservation of mass convergence analysis
在线阅读 下载PDF
An Inner-Element Edge-Based Smoothed Finite Element Method
3
作者 Zhigang Pei Wei Xie +1 位作者 Tao Suo Zhimin Xu 《Acta Mechanica Solida Sinica》 2025年第5期815-824,共10页
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE... A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified. 展开更多
关键词 Smoothed finite element method(S-FEM) Edge-based smoothed finite element method(ES-FEM) User-defined element(UEL) Stress analysis Displacement analysis
原文传递
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method
4
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
5
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling finite element method Residual neural networks
在线阅读 下载PDF
Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures
6
作者 Xiaolin Li Xinyue Li +2 位作者 Liming Zhou Hangran Yang Xiaoqing Yuan 《Computers, Materials & Continua》 2025年第3期3821-3841,共21页
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i... Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures. 展开更多
关键词 Multiscale finite element method heterogeneous materials transient responses MAGNETO-ELECTRO-ELASTIC multiscale basis function
在线阅读 下载PDF
Optimal Error Estimates of Multiphysics Finite Element Method for a Nonlinear Poroelasticity Model with Nonlinear Stress-Strain Relation
7
作者 GE Zhi-hao LI Hai-run LI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2025年第3期271-294,共24页
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge... In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results. 展开更多
关键词 Nonlinear poroelasticity model Multiphysics finite element method Back-ward Euler method
在线阅读 下载PDF
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
8
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
9
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
在线阅读 下载PDF
Revealling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
10
作者 Zijia Liao Hesamoddin Rabiee +5 位作者 Lei Ge Xiaogang Li Zhaozhong Yang Qi Xue Chao Shen Hao Wang 《Journal of Materials Science & Technology》 2025年第8期72-81,共10页
Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres wi... Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant. 展开更多
关键词 Porous proppant finite and discrete element method(FDEM) CRACK Compressive strength
原文传递
A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method
11
作者 Lei-Yu Zhang Yi-Xuan Li +1 位作者 Ming-Yue Han Quan-Zhi Zhang 《Chinese Physics B》 2025年第4期154-160,共7页
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T... Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics. 展开更多
关键词 ion cyclotron range of frequency(ICRF)antennas finite element method perfect matching layer
原文传递
Three-dimensional forward modeling for magnetotelluric sounding by finite element method 被引量:3
12
作者 童孝忠 柳建新 +3 位作者 谢维 徐凌华 郭荣文 程云涛 《Journal of Central South University》 SCIE EI CAS 2009年第1期136-142,共7页
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar... A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances. 展开更多
关键词 magnetotelluric sounding three-dimensional forward modeling finite element method general variation principle divergence condition
在线阅读 下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
13
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 three-dimensional parabolic equation alternating direction method finite volume element method error estimate
在线阅读 下载PDF
Simulation of three-dimensional tension-induced cracks based on cracking potential function-incorporated extended finite element method 被引量:1
14
作者 WANG Xiang-nan YU Peng +4 位作者 ZHANG Xiang-tao YU Jia-lin HAO Qing-shuo LI Quan-ming YU Yu-zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期235-246,共12页
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination... In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously. 展开更多
关键词 extended finite element method CRACK three-dimensional calculation cracking potential function tensile failure
在线阅读 下载PDF
STUDY ON THREE-DIMENSIONAL FINITE BODIES CONTAINING CRACKS USING THE FINITE ELEMENT METHOD OF LINES 被引量:2
15
作者 HuShaowei WangHongxia 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第1期83-94,共12页
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac... The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior. 展开更多
关键词 3D finite element method of lines. 3D bodies with cracks stress intensity factors
在线阅读 下载PDF
Three-Dimensional Thermo-Elastic-Plastic Finite Element Method Modeling for Predicting Weld-Induced Residual Stresses and Distortions in Steel Stiffened-Plate Structures 被引量:1
16
作者 Myung Su Yi Chung Min Hyun Jeom Kee Paik 《World Journal of Engineering and Technology》 2018年第1期176-200,共25页
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p... The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented. 展开更多
关键词 STEEL Stiffened-Plate Structures Weld-Induced Initial Distortion Weld-Induced Residual Stress Nonlinear finite element method three-dimensional Ther-mo-Elastic-Plastic finite element Analysis Full Scale Measurements
在线阅读 下载PDF
High-thermal free vibration analysis of functionally graded microplates using a new finite element formulation based on TSDT and MSCT
17
作者 Huu Trong Dang Nhan Thinh Hoang +2 位作者 Quoc Hoa Pham Trung Thanh Tran Huy Gia Luong 《Defence Technology(防务技术)》 2025年第2期131-149,共19页
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r... Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles. 展开更多
关键词 Microplates Functionally graded material finite element method Modified couple stress theory New TSDT High-thermal free vibration Pasternak foundation
在线阅读 下载PDF
Solving fluid flow in discontinuous heterogeneous porous media and multi-layer strata with interpretable physics-encoded finite element network
18
作者 Xi Wang Wei Wu He-Hua Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5509-5525,共17页
Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily sim... Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or multi-layer strata when labeled data are missing.This work aims to develop a universal network structure to encode the mass continuity equation and Darcy’s law without labeled data.The finite element approximation,which can decompose a complex heterogeneous domain into simpler ones,is adopted to build the differentiable network.Without conventional DNNs,physics-encoded finite element network(PEFEN)can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training.Benefiting from its discretized formulation,the discontinuous heterogeneous hydraulic conductivity is readily embedded into the network.Three typical cases are reproduced to corroborate PEFEN’s superior performance over conventional PINNs and the PINN with mixed formulation.PEFEN is sparse and demonstrated to be capable of dealing with heterogeneity with much fewer training iterations(less than 1/30)than the improved PINN with mixed formulation.Thus,PEFEN saves energy and contributes to low-carbon AI for science.The last two cases focus on common geotechnical settings of impermeable sheet pile in singlelayer and multi-layer strata.PEFEN solves these cases with high accuracy,circumventing costly labeled data,extra computational burden,and additional treatment.Thus,this study warrants the further development and application of PEFEN as a novel differentiable network in porous flow of practical geotechnical engineering. 展开更多
关键词 finite element method(FEM) Physics-informed neural network(PINN) Carbon neutrality Sheet pile Sharp/steep gradients Porous flow
在线阅读 下载PDF
Three-dimensional analysis of elastic stress distribution of indented ceramic surface by finite element method 被引量:1
19
作者 Tatsuyuki NEZU 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期551-557,共7页
The three-dimensional stress distributions in the area surrounding indentation pattern for three different materials, Al2O3, Si3N4 and SiC were analyzed by finite element method(FEM). Those theoretical results were al... The three-dimensional stress distributions in the area surrounding indentation pattern for three different materials, Al2O3, Si3N4 and SiC were analyzed by finite element method(FEM). Those theoretical results were also compared with the experimental ones by Rockwell hardness test. The effect of loading stress on the plastic deformation in specimens, surface was investigated on the assumption of shear strain energy theory by Huber-Mises when the materials were indented. The distributions of nomal stress, shear stress, and Mises stress were analysed with variations of loading conditions. It is clear that the analytical results for the stress distributions, the crack length and its density of probability are in good agreement with the experimental results. 展开更多
关键词 锯齿状陶瓷表面 弹性应力分布 有限元法 三维分析
在线阅读 下载PDF
CHEBYSHEV PSEUDOSPECTRAL-HYBRID FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL VORTICITY EQUATION
20
作者 郭本瑜 候镜宇 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1996年第2期161-196,共36页
In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability... In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability and the convergence are proved strictly.The numerical results show the advantages of this method.The technique in this paper is also applicable to other three-dimensional nonlinear problems in fluid dynamics. 展开更多
关键词 three-dimensional VORTICITY EQUATION CHEBYSHEV pseudospectral-hybrid finite element
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部