In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec...Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.展开更多
Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation softwar...Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.展开更多
The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering appl...Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat...It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.展开更多
Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
This paper presents a three-dimensional flow field simulation of the steady flows through diffusers and nozzles with straight or serrated-sided walls to analyze the effect of the channel structure on the flow characte...This paper presents a three-dimensional flow field simulation of the steady flows through diffusers and nozzles with straight or serrated-sided walls to analyze the effect of the channel structure on the flow characteristics.The pressure and velocity profiles in the diffusers and the nozzles as well as the net volumetric flow rate are determined.Our simulation demonstrates that the pressure and velocity profiles in the serrated diffuser/nozzles are more complicated than those with the straight-sided wall,while the net steady flow rate with the straight-sided wall increases monotonically with the increase of the pressure difference,the steady flow rate with serrated sided walls increases gradually to reach a maximum and then decreases with the increase of the pressure difference.The results suggest that the number of the sawteeth plays a significant role in optimizing the design of serrated diffusers and nozzles for improving the transport efficiency of valveless micro-pumps.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.
基金Supported by the Research Starting Funds for Imported Talents of Ningxia University under Grant No BQD2012011
文摘Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.
基金The reseach is supported by the TG 2000067208 project
文摘Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
基金supported by the National Natural Science Foundation of China (Grant No. 50379046)the Doctoral Fund of the Ministry of Education of China (Grant No. A50221)
文摘Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金National Natural Science Foundation of China (No. 50775053, 50675046)
文摘It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
基金the National Natural Science Foundation of China(Grant Nos.61376115,11672065).
文摘This paper presents a three-dimensional flow field simulation of the steady flows through diffusers and nozzles with straight or serrated-sided walls to analyze the effect of the channel structure on the flow characteristics.The pressure and velocity profiles in the diffusers and the nozzles as well as the net volumetric flow rate are determined.Our simulation demonstrates that the pressure and velocity profiles in the serrated diffuser/nozzles are more complicated than those with the straight-sided wall,while the net steady flow rate with the straight-sided wall increases monotonically with the increase of the pressure difference,the steady flow rate with serrated sided walls increases gradually to reach a maximum and then decreases with the increase of the pressure difference.The results suggest that the number of the sawteeth plays a significant role in optimizing the design of serrated diffusers and nozzles for improving the transport efficiency of valveless micro-pumps.