Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adul...Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adult patients with bimaxillary dentoalveolar protrusion had the four first premolars extracted.Miniscrews were placed to provide maximum anchorage for upper incisor retraction and intrusion.A computed tomography(CT) scan was performed after placement of the miniscrews and treatment.The 3D reconstructions of pre-and post-CT data were used to assess the dehiscence of upper anterior alveolar bone.Results:The amounts of upper incisor retraction at the edge and apex were(7.64±1.68) and(3.91±2.10) mm,respectively,and(1.34±0.74) mm of upper central incisor intrusion.Upper alveolar bone height losses at labial alveolar ridge crest(LAC) and palatal alveolar ridge crest(PAC) were 0.543 and 2.612 mm,respectively,and the percentages were(6.49±3.54)% and(27.42±9.77)%,respectively.The shape deformations of LAC-labial cortex bending point(LBP) and PAC-palatal cortex bending point(PBP) were(15.37±5.20)° and(6.43±3.27)°,respectively.Conclusions:Thus,for adult patients with bimaxillary protrusion,mechanobiological response of anterior alveolus should be taken into account during incisor retraction and intrusion.Pursuit of maximum anchorage might lead to upper anterior alveolar bone loss.展开更多
The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyt...The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyte have been examined for the extraction of various inclusion particles,in order to evaluate their three-dimensional morphologies and compositional segregations.The cross section of fine inclusion particle,which was prepared by focused ion beam method,was qualitatively analyzed using Auger electron spectroscopy.From the results obtained by this method,the formation mechanism of complex inclusion particle could be explained clearly.展开更多
Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstructi...Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.展开更多
In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in...In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.展开更多
BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth o...BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth on LTE during COVID-19 and to identify disparities in outcomes disaggregated by sociodemographic factors.METHODS This was a retrospective study of patients who initiated LTE at our center from 3/16/20-3/16/21(“COVID-19 era”)and the year prior(3/16/19-3/15/20,“pre-COVID-19 era”).We compared LTE duration times between eras and explored the effects of telehealth and inpatient evaluations on LTE duration,listing,and pretransplant mortality.RESULTS One hundred and seventy-eight patients were included in the pre-COVID-19 era cohort and one hundred and ninety-nine in the COVID-19 era cohort.Twentynine percent(58/199)of COVID-19 era initial LTE were telehealth,compared to 0%(0/178)pre-COVID-19.There were more inpatient evaluations during COVID-19 era(40%vs 28%,P<0.01).Among outpatient encounters,telehealth use for initial LTE during COVID-19 era did not impact likelihood of listing,pretransplant mortality,or time to LTE and listing.Median times to LTE and listing during COVID-19 were shorter than pre-COVID-19,driven by increased inpatient evaluations.Sociodemographic factors were not predictive of telehealth.CONCLUSION COVID-19 demonstrates a shift to telehealth and inpatient LTE.Telehealth does not impact LTE or listing duration,likelihood of listing,or mortality,suggesting telehealth may facilitate LTE without negative outcomes.展开更多
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b...Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict ...China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHO...OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHODS:A single-center,retrospective analysis was conducted on patients diagnosed with IMN who met predefined inclusion and exclusion criteria.Data were collected from the Department of Nephrology at Longhua Hospital,affiliated with Shanghai University of Traditional Chinese Medicine,between January 2007 and December 2011.Clinical parameters including 24-h urinary protein,serum albumin,serum creatinine,and estimated glomerular filtration rate(e GFR,EPI)were assessed at baseline and at 1,3,5,and 10 years of follow-up.The efficacy of the Strengthening Spleen and Draining Dampness therapy was analyzed using repeated measures analysis of variance(ANOVA).Kaplan-Meier survival curves and multivariate proportional hazards model(Cox regression models)were employed to identify factors associated with treatment outcomes.RESULTS:A total of 265 patients were included,with a median follow-up duration of 96 months(36,122).TCM treatment significantly reduced 24-h urinary protein levels(P<0.001),and increased serum albumin levels(P<0.001),while serum creatinine remained stable(P=0.187).Remission rates at 1,3,5,and 10 years were 52.81%,69.71%,68.39%,and 72.36%,respectively,and the rates of avoiding composite outcome events at the same intervals were 98.27%,94.29%,94.19%,and 93.50%.In the subgroup receiving TCM only,remission rates were 56.67%,84.44%,76.32%,and 82.86%.For patients treated initially with Western Medicine followed by TCM,the rates were 52.83%,65.85%,67.47%and 67.75%.In the cohort of patients who received TCM as their first-line therapy,remission rates were 49.23%,62.50%,61.76%,and 69.23%.Multivariate Cox regression analysis revealed that the duration of TCM treatment[hazard ratio(HR)=0.826,95%confidence interval(CI)(0.779,0.876),P<0.001],presence of hypertension[HR=1.912,95%CI(1.181,3.094),P=0.008],baseline serum albumin level[HR=0.930,95%CI(0.894,0.969),P<0.001],and the rate of serum albumin increase within the first year of treatment[HR=0.930,95%CI(0.909,0.957),P<0.001]were significantly associated with clinical outcomes.CONCLUSION:The Strengthening Spleen and Draining Dampness therapy demonstrated robust short-and longterm efficacy in treating IMN,with high rates of remission and renal survival over 10 years.Key factors influencing clinical remission included the duration of TCM treatment,baseline serum albumin levels,the presence of hypertension,and the rate of increase in serum albumin within the first year.These findings suggest that this TCM approach provides a viable long-term treatment option for IMN.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty)...To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.展开更多
Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants h...Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.展开更多
Introduction: The WHO’s measles control strategy is based on epidemiological surveillance and vaccination. Little is currently known about the performance of the surveillance system, particularly in outlying areas. I...Introduction: The WHO’s measles control strategy is based on epidemiological surveillance and vaccination. Little is currently known about the performance of the surveillance system, particularly in outlying areas. It is in this context that the present study was carried out to evaluate the measles epidemiological surveillance system in the Kangaba health district. Method: This was a descriptive cross-sectional study with retrospective data collection for the period from 1 January to 31 December 2022 in the Kangaba health district with 18 epidemiological surveillance officers. Data were collected using an observation grid and documentary analysis. Results: We found a simplicity of 97%, a representativeness of 95% and a reactivity of 53%. Not all notified cases were sampled (64%). Of the 17 CSCom, 8 were positive. A total of 34 confirmed cases of measles were recorded, with one death. Conclusion: Overall, the system is functional and well-established in the health centres, but it remains important to ensure that suspected cases are investigated and that the time between sampling and the availability of laboratory results is respected.展开更多
Under the rapid impetus of artificial intelligence(AI)technology,human society is stepping into the age of intelligence at an unprecedented speed.A new generation of information technology such as AI is not only a new...Under the rapid impetus of artificial intelligence(AI)technology,human society is stepping into the age of intelligence at an unprecedented speed.A new generation of information technology such as AI is not only a new engine of economic development,but also a gas pedal of social development,which has had a profound impact on the field of education.In the face of the opportunities and challenges of the AI era,it is particularly urgent to build a scientific and reasonable education evaluation system.This paper combines the context of the times with the new technology of AI to discuss the opportunities,challenges,and implementation strategies of educational evaluation reform in the era of AI,with a view to providing references for the construction of the educational evaluation system and the development of high-quality education in the new era.展开更多
Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods...Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.展开更多
Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essentia...Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
基金Project supported by the Shandong Science and Technology Planning Project Contract Research (Nos. 2008GG30002019 and 2008GG 30001001) of Chinathe Shandong University Dental School Project Research (Nos. P2009009,P2009010,and P2010010),China
文摘Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adult patients with bimaxillary dentoalveolar protrusion had the four first premolars extracted.Miniscrews were placed to provide maximum anchorage for upper incisor retraction and intrusion.A computed tomography(CT) scan was performed after placement of the miniscrews and treatment.The 3D reconstructions of pre-and post-CT data were used to assess the dehiscence of upper anterior alveolar bone.Results:The amounts of upper incisor retraction at the edge and apex were(7.64±1.68) and(3.91±2.10) mm,respectively,and(1.34±0.74) mm of upper central incisor intrusion.Upper alveolar bone height losses at labial alveolar ridge crest(LAC) and palatal alveolar ridge crest(PAC) were 0.543 and 2.612 mm,respectively,and the percentages were(6.49±3.54)% and(27.42±9.77)%,respectively.The shape deformations of LAC-labial cortex bending point(LBP) and PAC-palatal cortex bending point(PBP) were(15.37±5.20)° and(6.43±3.27)°,respectively.Conclusions:Thus,for adult patients with bimaxillary protrusion,mechanobiological response of anterior alveolus should be taken into account during incisor retraction and intrusion.Pursuit of maximum anchorage might lead to upper anterior alveolar bone loss.
文摘The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyte have been examined for the extraction of various inclusion particles,in order to evaluate their three-dimensional morphologies and compositional segregations.The cross section of fine inclusion particle,which was prepared by focused ion beam method,was qualitatively analyzed using Auger electron spectroscopy.From the results obtained by this method,the formation mechanism of complex inclusion particle could be explained clearly.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2902103National Natural Science Foundation of China,Grant/Award Number:51934001Fundamental Research Funds for the Central Universities,Grant/Award Number:2023JCCXLJ02。
文摘Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.
文摘In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.
文摘BACKGROUND Coronavirus disease 2019(COVID-19)disrupted healthcare and led to increased telehealth use.We explored the impact of COVID-19 on liver transplant evaluation(LTE).AIM To understand the impact of telehealth on LTE during COVID-19 and to identify disparities in outcomes disaggregated by sociodemographic factors.METHODS This was a retrospective study of patients who initiated LTE at our center from 3/16/20-3/16/21(“COVID-19 era”)and the year prior(3/16/19-3/15/20,“pre-COVID-19 era”).We compared LTE duration times between eras and explored the effects of telehealth and inpatient evaluations on LTE duration,listing,and pretransplant mortality.RESULTS One hundred and seventy-eight patients were included in the pre-COVID-19 era cohort and one hundred and ninety-nine in the COVID-19 era cohort.Twentynine percent(58/199)of COVID-19 era initial LTE were telehealth,compared to 0%(0/178)pre-COVID-19.There were more inpatient evaluations during COVID-19 era(40%vs 28%,P<0.01).Among outpatient encounters,telehealth use for initial LTE during COVID-19 era did not impact likelihood of listing,pretransplant mortality,or time to LTE and listing.Median times to LTE and listing during COVID-19 were shorter than pre-COVID-19,driven by increased inpatient evaluations.Sociodemographic factors were not predictive of telehealth.CONCLUSION COVID-19 demonstrates a shift to telehealth and inpatient LTE.Telehealth does not impact LTE or listing duration,likelihood of listing,or mortality,suggesting telehealth may facilitate LTE without negative outcomes.
基金the National Key Research Program of China under granted No.92164201National Natural Science Foundation of China for Distinguished Young Scholars No.62325403+2 种基金Natural Science Foundation of Jiangsu Province(BK20230498)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB427)the National Natural Science Foundation of China(62304147).
文摘Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
基金Supported by PetroChina Prospective and Basic Technological Project(2022DJ5503).
文摘China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金Supported by the National Key Research and Development Project,Clinical Study on the Treatment of Refractory Membranous Nephropathy with the Treatment of Strengthening Spleen and Draining Dampness in Method using Single Group Target Value Method(No.2019YFC1709403)Systematic Study on the Diagnosis and Treatment Rules of Membranous Nephropathy in Traditional Chinese Medicine(No.2023YFC35033501,No.2023YFC35033503)。
文摘OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHODS:A single-center,retrospective analysis was conducted on patients diagnosed with IMN who met predefined inclusion and exclusion criteria.Data were collected from the Department of Nephrology at Longhua Hospital,affiliated with Shanghai University of Traditional Chinese Medicine,between January 2007 and December 2011.Clinical parameters including 24-h urinary protein,serum albumin,serum creatinine,and estimated glomerular filtration rate(e GFR,EPI)were assessed at baseline and at 1,3,5,and 10 years of follow-up.The efficacy of the Strengthening Spleen and Draining Dampness therapy was analyzed using repeated measures analysis of variance(ANOVA).Kaplan-Meier survival curves and multivariate proportional hazards model(Cox regression models)were employed to identify factors associated with treatment outcomes.RESULTS:A total of 265 patients were included,with a median follow-up duration of 96 months(36,122).TCM treatment significantly reduced 24-h urinary protein levels(P<0.001),and increased serum albumin levels(P<0.001),while serum creatinine remained stable(P=0.187).Remission rates at 1,3,5,and 10 years were 52.81%,69.71%,68.39%,and 72.36%,respectively,and the rates of avoiding composite outcome events at the same intervals were 98.27%,94.29%,94.19%,and 93.50%.In the subgroup receiving TCM only,remission rates were 56.67%,84.44%,76.32%,and 82.86%.For patients treated initially with Western Medicine followed by TCM,the rates were 52.83%,65.85%,67.47%and 67.75%.In the cohort of patients who received TCM as their first-line therapy,remission rates were 49.23%,62.50%,61.76%,and 69.23%.Multivariate Cox regression analysis revealed that the duration of TCM treatment[hazard ratio(HR)=0.826,95%confidence interval(CI)(0.779,0.876),P<0.001],presence of hypertension[HR=1.912,95%CI(1.181,3.094),P=0.008],baseline serum albumin level[HR=0.930,95%CI(0.894,0.969),P<0.001],and the rate of serum albumin increase within the first year of treatment[HR=0.930,95%CI(0.909,0.957),P<0.001]were significantly associated with clinical outcomes.CONCLUSION:The Strengthening Spleen and Draining Dampness therapy demonstrated robust short-and longterm efficacy in treating IMN,with high rates of remission and renal survival over 10 years.Key factors influencing clinical remission included the duration of TCM treatment,baseline serum albumin levels,the presence of hypertension,and the rate of increase in serum albumin within the first year.These findings suggest that this TCM approach provides a viable long-term treatment option for IMN.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
文摘To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.
基金supported by the key project at the central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(Grant number 2060302)the National Natural Science Foundation of China(Grant number 82373982,82173929).
文摘Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.
文摘Introduction: The WHO’s measles control strategy is based on epidemiological surveillance and vaccination. Little is currently known about the performance of the surveillance system, particularly in outlying areas. It is in this context that the present study was carried out to evaluate the measles epidemiological surveillance system in the Kangaba health district. Method: This was a descriptive cross-sectional study with retrospective data collection for the period from 1 January to 31 December 2022 in the Kangaba health district with 18 epidemiological surveillance officers. Data were collected using an observation grid and documentary analysis. Results: We found a simplicity of 97%, a representativeness of 95% and a reactivity of 53%. Not all notified cases were sampled (64%). Of the 17 CSCom, 8 were positive. A total of 34 confirmed cases of measles were recorded, with one death. Conclusion: Overall, the system is functional and well-established in the health centres, but it remains important to ensure that suspected cases are investigated and that the time between sampling and the availability of laboratory results is respected.
文摘Under the rapid impetus of artificial intelligence(AI)technology,human society is stepping into the age of intelligence at an unprecedented speed.A new generation of information technology such as AI is not only a new engine of economic development,but also a gas pedal of social development,which has had a profound impact on the field of education.In the face of the opportunities and challenges of the AI era,it is particularly urgent to build a scientific and reasonable education evaluation system.This paper combines the context of the times with the new technology of AI to discuss the opportunities,challenges,and implementation strategies of educational evaluation reform in the era of AI,with a view to providing references for the construction of the educational evaluation system and the development of high-quality education in the new era.
基金This paper is the research result of“Research on Innovation of Evidence-Based Teaching Paradigm in Vocational Education under the Background of New Quality Productivity”(2024JXQ176)the Shandong Province Artificial Intelligence Education Research Project(SDDJ202501035),which explores the application of artificial intelligence big models in student value-added evaluation from an evidence-based perspective。
文摘Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.
文摘Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.