The paper describes an approach to teaching mutually-coupled circuits CAD techniques to undergraduate students pursuing a degree course in electrical engineering or physics, and explains how a series of simulated expe...The paper describes an approach to teaching mutually-coupled circuits CAD techniques to undergraduate students pursuing a degree course in electrical engineering or physics, and explains how a series of simulated experiments may be incorporated into the existing subjects. The simulated experiments make use of a two-dimensional open-access software based on the finite-element method. At the laboratory meetings, the students learn how to set up field problems for solution, and how to examine the results. Simulation tasks based on three axisymmetric open-boundary problems are used to introduce different numeric techniques to compute inductance and magnetic forces. The paper takes the reader to a step-by-step simulation journey, and provides all the basic elements required for further exploration of axially-symmetric systems.展开更多
基金the Brazilian National Council of Technological and Scientific Development(CNPq)and Brazilian Federal Agency for Postgraduate Studies(CAPES).
文摘The paper describes an approach to teaching mutually-coupled circuits CAD techniques to undergraduate students pursuing a degree course in electrical engineering or physics, and explains how a series of simulated experiments may be incorporated into the existing subjects. The simulated experiments make use of a two-dimensional open-access software based on the finite-element method. At the laboratory meetings, the students learn how to set up field problems for solution, and how to examine the results. Simulation tasks based on three axisymmetric open-boundary problems are used to introduce different numeric techniques to compute inductance and magnetic forces. The paper takes the reader to a step-by-step simulation journey, and provides all the basic elements required for further exploration of axially-symmetric systems.