期刊文献+
共找到3,116篇文章
< 1 2 156 >
每页显示 20 50 100
Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys 被引量:3
1
作者 黄威 贲放 +5 位作者 殷长春 孟庆敏 李文杰 廖桂香 吴珊 西永在 《Applied Geophysics》 SCIE CSCD 2017年第3期431-440,462,共11页
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop... Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM. 展开更多
关键词 three-dimensional time-domain airborne electromagnetic arbitrary anisotropy vector finite element
在线阅读 下载PDF
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
2
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
3
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
The ρ-Meson Electromagnetic Form Factors within the Light-Front Quark Model
4
作者 Shuai Xu Xiao-Nan Li Xing-Gang Wu 《Chinese Physics Letters》 2025年第8期31-37,共7页
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius... In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles. 展开更多
关键词 light front quark model zero mode contribution electromagnetic form factors emffs within relativistic effects rho meson magnetic moment electromagnetic form factors angular condition
原文传递
The detection of keratoconus using a three-dimensional corneal model derived from anterior segment optical coherence tomography
5
作者 Sang Ngoc Tran Isa S.K.Mohammed +1 位作者 Zeshan Tariq Wuqaas M.Munir 《Annals of Eye Science》 2025年第3期73-82,共10页
Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to b... Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to be considered a gold standard.This study aims to introduce novel metrics to differentiate between KCN and healthy corneas using three-dimensional(3D)measurements of surface area and volume.Methods:This retrospective observational study examined KCN patients along with healthy control patients between the ages of 20 and 79 years old at the University of Maryland,Baltimore.The selected patients underwent a nine-line raster scan anterior segment optical coherence tomography(AS-OCT).ImageJ was used to determine the central 6 mm of each image and each corneal image was then divided into six 1 mm segments.Free-D software was then used to render the nine different images into a 3D model to calculate corneal surface area and volume.A two-tailed Mann-Whitney test was used to assess statistical significance when comparing these subsets.Results:Thirty-three eyes with KCN,along with 33 healthy control,were enrolled.There were statistically significant differences between the healthy and KCN groups in the metric of anterior corneal surface area(13.927 vs.13.991 mm^(2),P=0.046),posterior corneal surface area(14.045 vs.14.173 mm^(2),P<0.001),and volume(8.430 vs.7.773 mm3,P<0.001)within the central 6 mm.Conclusions:3D corneal models derived from AS-OCT can be used to measure anterior corneal surface area,posterior corneal surface area,and corneal volume.All three parameters are statistically different between corneas with KCN and healthy corneas.Further study and application of these parameters may yield new methodologies for the detection of KCN. 展开更多
关键词 CORNEA ECTASIA keratoconus(KCN) anterior segment optical coherence tomography(AS-OCT) three-dimensional model(3D model)
暂未订购
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
6
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures 被引量:8
7
作者 Liyuan Yu Qianqian Zhu +3 位作者 Zhiqiang Guo Yuhang Cheng Zirui Jia Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期129-139,共11页
In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisti... In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisting of MXene and transition metal oxides(TMOs)through efficient electrostatic self-assembly.This three-dimensional network structure has rich heterojunction structures,which can cause a large amount of interface polarization and conduction losses in incident electromagnetic waves.Hollow structures cause multiple reflections and scattering of electromagnetic waves,which is also an important reason for further increasing electromagnetic wave losses.When the doping ratio is 1:1,the system has the best impedance matching,the maximum effective absorption bandwidth(EAB max)can reach 5.12 GHz at 1.7 mm,and the minimum reflection loss(RL_(min))is-50.30 dB at 1.8 mm.This provides a reference for the subsequent formation of 2D-MXene materials into 3D materials. 展开更多
关键词 MXene three-dimensional frame Heterojunction structure Conduction loss electromagnetic wave absorption
原文传递
Electromagnetic equivalent physical model for high-speed aircraft radomes considering high-temperature effects
8
作者 JI Jianmin WANG Wei +3 位作者 YIN Kai WANG Kaibin CHEN Bo YU Huilong 《Journal of Systems Engineering and Electronics》 2025年第6期1453-1464,共12页
During actual high-speed flights,the electromagnetic(EM)properties of aircraft radomes are influenced by dielectric temperature drift,leading to substantial drift in the boresight errors(BSEs)from their room temperatu... During actual high-speed flights,the electromagnetic(EM)properties of aircraft radomes are influenced by dielectric temperature drift,leading to substantial drift in the boresight errors(BSEs)from their room temperature values.However,applying thermal loads to the radome during ground-based EM simulation tests is challenging.This paper presents an EM equivalent physical model(EEPM)for high-speed aircraft radomes that account for the effects of dielectric temperature drift.This is achieved by attaching dielectric slices of specific thicknesses to the outer surface of a room-temperature radome(RTR)to simulate the increase in electrical thickness resulting from high temperatures.This approach enables accurate simulations of the BSEs of high-temperature radomes(HTRs)under high-speed flight conditions.An application example,supported by full-wave numerical calculations and physical testing,demonstrates that the EEPM exhibits substantial improvement in approximating the HTR compared to the RTR,facilitating precise simulations of the BSEs of HTRs during high-speed flights.Overall,the proposed EEPM is anticipated to considerably enhance the alignment between the ground-based simulations of high-speed aircraft guidance systems and their actual flight conditions. 展开更多
关键词 high-speed aircraft RADOME dielectric temperature drift boresight error(BSE) electromagnetic equivalent physical model(EEPM)
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
9
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution 被引量:4
10
作者 Fengyuan Wang Ping Xu Ning Shi +5 位作者 Liru Cui Yahui Wang Dawei Liu Honghong Zhao Xijiang Han Yunchen Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期7-16,共10页
Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling st... Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling strategy is reported for the synthesis of Co/carbon foams,which is simply accomplished by direct pyrolyzing the mixture of polyvinylpyrrolidone(PVP)and cobalt nitrate hexahydrate(Co(NO_(3))_(2)·6 H_(2) O).Co(NO_(3))_(2)·6H_(2)O not only plays as the source of Co nanoparticles,but also accounts for the formation of 3D microstructure through releasing gas.By manipulating the weight ratio of Co(NO_(3))_(2)·6H_(2)O to PVP,the chemical composition,microstructure,and EM properties of these composites can be easily regulated.When the weight ratio reaches 1.5,the resultant composite displays good microwave absorption performance,whose reflection loss intensity and effective absorption bandwidth are superior to those of many common Co/C composites.EM analysis reveals that such architecture is greatly helpful to establish cross-linked conductive networks in the wax matrix,resulting in powerful dielectric loss under low absorber loading.Meanwhile,3D microstructure is also beneficial for multiple reflections that equal to extend the transmission path of incident EM waves.Simple synthesis strategy and desirable properties of these magnetic carbon foams may render them as the low-cost substitute of 3D graphene for the application against EM pollution. 展开更多
关键词 Polymer-bubbling three-dimensional foams Co/C composites electromagnetic pollution Microwave absorption
原文传递
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
11
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Three-Dimensional Metacomposite Based on Different Ferromagnetic Microwire Spacing for Electromagnetic Shielding 被引量:4
12
作者 QIAO Ye JIANG Qian +2 位作者 UDDIN Azim QIN Faxiang WU Liwei 《Journal of Donghua University(English Edition)》 CAS 2022年第3期206-210,共5页
An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on... An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields. 展开更多
关键词 three-dimensional(3D)metacomposite ferromagnetic microwire spacing electromagnetic shielding MECHANISM
在线阅读 下载PDF
Three-dimensional Electromagnetic Characteristics Analysis of Novel Linear Synchronous Motor under Lateral and Yaw Conditions of MAGLEV 被引量:4
13
作者 Gang Lv Zhixuan Zhang Xiaodong Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第1期29-36,共8页
Dynamic stability analysis of superconducting electro-dynamic maglev train under lateral and yawing motion condition is the key research content.The novel three-dimensional electromagnetic model of integrated linear s... Dynamic stability analysis of superconducting electro-dynamic maglev train under lateral and yawing motion condition is the key research content.The novel three-dimensional electromagnetic model of integrated linear synchronous motor in electro-dynamic maglev train with yawing operation condition is proposed,which can not only simultaneously achieve the propulsion,levitation and guidance performances of maglev vehicle,but also analyze the dynamic stability performance of train with yawing condition.The three-dimensional analytical method is introduced for analyzing the electromagnetic force characteristics of the linear synchronous motor with the yawing operation condition.Firstly,the topology structure and operation principle of the linear synchronous motor with yawing attitude are proposed.Secondly,the three-dimensional analytical model and expressions of electromagnetic characteristics are obtained by equivalent circuit method and Fourier decomposition method,such as levitation force,guidance force,propulsion force and yawing torque,etc.Finally,the three-dimensional electromagnetic characteristics of the linear synchronous motor are calculated under yawing operation conditions of maglev train,and the correctness of the analytical theory is verified by the finite element analysis and measured data on the test line. 展开更多
关键词 electro-dynamic maglev system linear synchronous motor propulsion levitation and guidance three-dimensional electromagnetic characteristics
在线阅读 下载PDF
Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation 被引量:4
14
作者 刘云 王绪本 王贇 《Applied Geophysics》 SCIE CSCD 2013年第2期134-144,235,共12页
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t... To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body. 展开更多
关键词 Time-domain transient electromagnetics secondary field DuFort-Frankel finite-difference method numerical modeling.
在线阅读 下载PDF
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data 被引量:1
15
作者 李文奔 曾昭发 +3 位作者 李静 陈雄 王坤 夏昭 《Applied Geophysics》 SCIE CSCD 2016年第1期37-47,218,共12页
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d... Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method. 展开更多
关键词 Frequency-domain airborne electromagnetic finite element method 2.5D geoelectric model damped least-squares method
在线阅读 下载PDF
Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources 被引量:2
16
作者 李俊杰 严家斌 皇祥宇 《Applied Geophysics》 SCIE CSCD 2015年第4期503-515,627,共14页
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as eleme... Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM. 展开更多
关键词 Element-free Galerkin method point-interpolation method radial pointinterpolation method Poisson equation controlled-source electromagnetic modeling coupled meshfree method
在线阅读 下载PDF
Experimental studies and phase field modeling of microstructure evolution during solidification with electromagnetic stirring 被引量:9
17
作者 P.GERALD TENNYSON P.KUMAR +2 位作者 H.LAKSHMI G.PHANIKUMAR P.DUTTA 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期774-780,共7页
Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treat... Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treatment was used to produce a transition from rosette to globular microstructure.The current and the duration of stirring were explored as control parameters.Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles.The effect of processing parameters on the dendrite fragmentation was discussed.Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process.A non-isothermal alloy solidification model was used for simulations.The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one.Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale.The results were interpreted in the light of existing theories of microstructure refinement and globularisation. 展开更多
关键词 electromagnetic STIRRING NON-DENDRITIC phase field modeling microstructure
在线阅读 下载PDF
DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS 被引量:15
18
作者 SHI Wenzhong 《Geo-Spatial Information Science》 2000年第2期6-12,共7页
This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulated Irregular Network (TIN) and octree models are int... This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulated Irregular Network (TIN) and octree models are integrated in this hybrid models. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation. 展开更多
关键词 hybrid three-dimensional model TIN model octree model GIS
在线阅读 下载PDF
A three-dimensional semi-implicit unstructured grid finite volume ocean model 被引量:10
19
作者 WANG Zhili GENG Yanfen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第1期68-78,共11页
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d... A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results. 展开更多
关键词 three-dimensional model finite volume unstructured grid SEMI-IMPLICIT z-level grid
在线阅读 下载PDF
Physics-based analysis and simulation model of electromagnetic interference induced soft logic upset in CMOS inverter 被引量:4
20
作者 Yu-Qian Liu Chang-Chun Chai +4 位作者 Yu-Hang Zhang Chun-Lei Shi Yang Liu Qing-Yang Fan Yin-Tang Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期531-538,共8页
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This... The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset. 展开更多
关键词 electromagnetic interference soft logic upset non-equilibrium carrier upset model
原文传递
上一页 1 2 156 下一页 到第
使用帮助 返回顶部