期刊文献+
共找到3,089篇文章
< 1 2 155 >
每页显示 20 50 100
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
1
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
2
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
The ρ-Meson Electromagnetic Form Factors within the Light-Front Quark Model
3
作者 Shuai Xu Xiao-Nan Li Xing-Gang Wu 《Chinese Physics Letters》 2025年第8期31-37,共7页
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius... In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles. 展开更多
关键词 light front quark model zero mode contribution electromagnetic form factors emffs within relativistic effects rho meson magnetic moment electromagnetic form factors angular condition
原文传递
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
4
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
5
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
6
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys 被引量:3
7
作者 黄威 贲放 +5 位作者 殷长春 孟庆敏 李文杰 廖桂香 吴珊 西永在 《Applied Geophysics》 SCIE CSCD 2017年第3期431-440,462,共11页
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop... Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM. 展开更多
关键词 three-dimensional time-domain airborne electromagnetic arbitrary anisotropy vector finite element
在线阅读 下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation 被引量:2
8
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
在线阅读 下载PDF
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
9
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
暂未订购
A new electromagnetic oscillation phenomenon on vanadium-compensationsemi-insulating 4H-SiC PCSS
10
作者 Lin Zhouyang Chen Zhipeng +7 位作者 Sun Qian Zheng Zhong Xu Kun Jiang Shuqing Zhang Yuming Wang Yutian Hu Yanfei Guo Hui 《强激光与粒子束》 北大核心 2025年第5期112-118,共7页
Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds... Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds to laser pulse and high-voltage signal while the metal coil generates an oscillating voltage pulseenvelope signal. The generation of this oscillating signal is not related to the input bias voltage of the PCSS, the pulsecircuit components, or the electrode structure of the PCSS, rather it is related to the output characteristic of the PCSS.This physical phenomenon can be explained using the current surge model in photoconducting antenna. Preparingohmic contact electrode on the silicon carbide material forms the PCSS, which generates a large number ofphotogenerated carriers when ultra-fast laser pulses irradiate the surface of the material and Simultaneously applies abias voltage signal between the electrode. At this time inside the PCSS the electric field causes the transient current,radiating electromagnetic wave to the metal coil to generate oscillating signal. 展开更多
关键词 VCSI 4H-SiC PCSS electromagnetic oscillation current surge model
在线阅读 下载PDF
Fast and Accurate Prediction of Electromagnetic and Temperature Fields for SPMSM Equipped with Unequally Thick Magnetic Poles
11
作者 Feng Liu Xiuhe Wang +1 位作者 Lingling Sun Hongye Wei 《CES Transactions on Electrical Machines and Systems》 2025年第2期199-211,共13页
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ... With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment. 展开更多
关键词 electromagnetic field and temperature field electromagnetic thermal coupling analytical model(ETcAM) Fast and accurate prediction SPMSM Unequally thick magnetic poles
在线阅读 下载PDF
Virtual and augmented reality systems and three-dimensional printing of the renal model—novel trends to guide preoperative planning for renal cancer
12
作者 Claudia-Gabriela Moldovanu 《Asian Journal of Urology》 CSCD 2024年第4期521-529,共9页
Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal i... Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment.Methods:A specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments.Results:Patient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system. 展开更多
关键词 three-dimensional model three-dimensional printing Augmented reality Virtual reality
暂未订购
Consideration of the influence of supports in modeling the electromagnetic fields of 25 kV traction networks under emergency conditions
13
作者 Konstantin Suslov Andrey Kryukov +1 位作者 Ekaterina Voronina Pavel Ilyushin 《Global Energy Interconnection》 EI CSCD 2024年第4期528-540,共13页
Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits ex... Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered. 展开更多
关键词 Power supply systems AC railways Emergency conditions electromagnetic fields near supports modelING electromagnetic safety
在线阅读 下载PDF
Electromagnetic modeling of interference,confocal,and focus variation microscopy 被引量:1
14
作者 Tobias Pahl Felix Rosenthal +5 位作者 Johannes Breidenbach Corvin Danzglock Sebastian Hagemeier Xin Xu Marco Künne Peter Lehmann 《Advanced Photonics Nexus》 2024年第1期104-116,共13页
We present a unified electromagnetic modeling of coherence scanning interferometry,confocal microscopy,and focus variation microscopy as the most common techniques for surface topography inspection with micro-and nano... We present a unified electromagnetic modeling of coherence scanning interferometry,confocal microscopy,and focus variation microscopy as the most common techniques for surface topography inspection with micro-and nanometer resolution.The model aims at analyzing the instrument response and predicting systematic deviations.Since the main focus lies on the modeling of the microscopes,the light–surface interaction is considered,based on the Kirchhoff approximation extended to vectorial imaging theory.However,it can be replaced by rigorous methods without changing the microscope model.We demonstrate that all of the measuring instruments mentioned above can be modeled using the same theory with some adaption to the respective instrument.For validation,simulated results are confirmed by comparison with measurement results. 展开更多
关键词 interference microscopy coherence scanning interferometry confocal microscopy focus variation microscopy electromagnetic modeling surface topography measurement
在线阅读 下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
15
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
在线阅读 下载PDF
Hyper accuracy three-dimensional virtual anatomical rainbow model facilitates surgical planning and safe selective clamping during robot-assisted partial nephrectomy
16
作者 Francesco Ditonno Antonio Franco +8 位作者 Celeste Manfredi Daniele Amparore Enrico Checcucci Marco De Sio Alessandro Antonelli Cosimo De Nunzio Cristian Fiori Francesco Porpiglia Riccardo Autorino 《Asian Journal of Urology》 CSCD 2024年第4期660-665,共6页
Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transper... Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.Results:The operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.Conclusion:The present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact. 展开更多
关键词 Hyper accuracy three-dimensional rainbow model Augmented reality Clear cell renal cell carcinoma Robot-assisted partial nephrectomy Selective clamping
暂未订购
UAV-based transient electromagnetic 3D forward modeling and inversion and analysis of exploration capability
17
作者 WEI Laonao LIU Yunhe ZHANG Bo 《Global Geology》 2024年第3期154-166,共13页
Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex... Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards. 展开更多
关键词 UAV 3D forward modeling transient electromagnetic 3D inversion landslide model
在线阅读 下载PDF
Analysis of Modeling the Influence of Electromagnetic Fields Radiated by Industrial Static Converters and Impacts on Operators Using Maxwell’s Equations
18
作者 Anthony Bassesuka Sandoka Nzao Tuka Biaba Samuel Garcia +2 位作者 Obed Bitala Arsène Kasereka Kibwana Emmanuel Ndaye Kibuayi 《Open Journal of Applied Sciences》 2024年第8期2320-2350,共31页
The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of... The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings. 展开更多
关键词 modelING electromagnetic Field Power Converters Geometric Parameters Biological Tissue Maxwell Equation Bio-Heat Equation Thermal model
在线阅读 下载PDF
Application of Three-dimensional Modeling in a Hydrologic Test Reach
19
作者 Yuxing GAO Yiyang XIE 《Meteorological and Environmental Research》 2024年第6期67-69,共3页
To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Ye... To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Yellow River around Lanzhou hydrological station was selected to study three-dimensional modeling.The elevation data of river was processed through three-dimensional model constructing,water surface modeling and three-dimensional animation demonstration by using ArcGIS Pro software.Based on the historical highest flood level data of the test reach on September 15,1981,the real scene restoration was carried out based on the three-dimensional model,and the hydrological factors such as water depth and channel storage were analyzed.The three-dimensional modeling based on GIS technology can directly and realistically reflect the changes of topography and water surface of the test reach,and improve the application of hydrologic test results in flood control. 展开更多
关键词 three-dimensional modeling Hydrologic test ARCGIS Lanzhou hydrological station
在线阅读 下载PDF
Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution 被引量:4
20
作者 Fengyuan Wang Ping Xu Ning Shi +5 位作者 Liru Cui Yahui Wang Dawei Liu Honghong Zhao Xijiang Han Yunchen Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期7-16,共10页
Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling st... Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling strategy is reported for the synthesis of Co/carbon foams,which is simply accomplished by direct pyrolyzing the mixture of polyvinylpyrrolidone(PVP)and cobalt nitrate hexahydrate(Co(NO_(3))_(2)·6 H_(2) O).Co(NO_(3))_(2)·6H_(2)O not only plays as the source of Co nanoparticles,but also accounts for the formation of 3D microstructure through releasing gas.By manipulating the weight ratio of Co(NO_(3))_(2)·6H_(2)O to PVP,the chemical composition,microstructure,and EM properties of these composites can be easily regulated.When the weight ratio reaches 1.5,the resultant composite displays good microwave absorption performance,whose reflection loss intensity and effective absorption bandwidth are superior to those of many common Co/C composites.EM analysis reveals that such architecture is greatly helpful to establish cross-linked conductive networks in the wax matrix,resulting in powerful dielectric loss under low absorber loading.Meanwhile,3D microstructure is also beneficial for multiple reflections that equal to extend the transmission path of incident EM waves.Simple synthesis strategy and desirable properties of these magnetic carbon foams may render them as the low-cost substitute of 3D graphene for the application against EM pollution. 展开更多
关键词 Polymer-bubbling three-dimensional foams Co/C composites electromagnetic pollution Microwave absorption
原文传递
上一页 1 2 155 下一页 到第
使用帮助 返回顶部