BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,tw...BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,two-dimensional(2D)coculture of macrophages and ADSCs can not accurately mimic the in vivo cell microenvironment.AIM To establish both 2D and 3D osteogenic coculture models to investigate the interaction between macrophages and ADSCs.METHODS After obtaining ADSCs from surgery and inducing differentiation of the THP1 cell line,we established 2D and 3D osteogenic coculture models.To assess the level of osteogenic differentiation,we used alizarin red staining and measured the relative expression levels of osteogenic differentiation markers osteocalcin,Runt-related transcription factor 2,and alkaline phosphatase through polymerase chain reaction.Verification was conducted by analyzing the expression changes of N-cadherin and the activation of the Wnt/β-catenin signaling pathway using western blotting.RESULTS In this study,it was discovered that macrophages in 3D culture inhibited osteogenic differentiation of ADSCs,contrary to the effect in 2D culture.This observation confirmed the significance of intricate intercellular connections in the 3D culture environment.Additionally,the 3D culture group exhibited significantly higher N-cadherin expression and showed reducedβ-catenin and Wnt1 protein levels compared to the 2D culture group.CONCLUSION Macrophages promoted ADSC osteogenic differentiation in 2D culture conditions but inhibited it in 3D culture.The 3D culture environment might inhibit the Wnt/β-catenin signaling pathway by upregulating N-cadherin expression,ultimately hindering the osteogenic differentiation of ADSCs.By investigating the process of osteogenesis in ADSCs,this study provides novel ideas for exploring 3D osteogenesis in ADSCs,fracture repair,and other bone trauma repair.展开更多
BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimension...BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimensional asphericity of the femoral head of asymptomatic pediatric hips.We hypothesized that femoral head asphericity will vary significantly between male and female pediatric hips and increase with age in both sexes.METHODS Computed tomography scans were obtained on 158 children and adolescents from a single institution in the United States(8-18 years;50%male)without hip pain.Proximal femoral measurements including the femoral head diameter,femoral head volume,residual volume,asphericity index,and local diameter difference were used to evaluate femoral head sphericity.RESULTS In both sexes,the residual volume increased by age(P<0.05).Despite significantly smaller femoral head size in older ages(>13 years)in females,there were no sex-differences in residual volume and aspherity index.There were no age-related changes in mean diameter difference in both sexes(P=0.07)with no significant sex-differences across different age groups(P=0.06).In contrast,there were significant increases in local aspherity(maximum diameter difference)across whole surface of the femoral head and all quadrants except the inferior regions in males(P=0.03).There were no sex-differences in maximum diameter difference at any regions and age group(P>0.05).Increased alpha angle was only correlated to increased mean diameter difference across overall surface of the femoral head(P=0.024).CONCLUSION There is a substantial localized asphericity in asymptomatic hips which increases with age in.While 2D measured alpha angle can capture overall asphericity of the femoral head,it may not be sensitive enough to represent regional asphericity patterns.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of informatio...Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.展开更多
The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the p...The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ...Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.展开更多
BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structu...BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structure of depression and anxiety symptoms,with a focus on identifying differences at the symptom level between sex and age subgroups.METHODS A total of 1955 participants diagnosed with AIS aged 10-18 years were assessed using the Patient Health Questionnaire Depression Scale(PHO-9)and the Generalized Anxiety Disorder Scale(GAD-7),and 765 patients exhibiting PHQ-9 or GAD-7 scores ≥ 5 were enrolled in our study. Network analysis and network comparison tests were utilized toconstruct and compare the depression-anxiety symptoms networks among sex and age subgroups.RESULTSThe results revealed GAD3 “Excessive worry” and PHQ2 “Sad mood” were the most significant central symptomsin all subgroups, while “Sad mood” had higher strength than “Excessive worry” in the lower age group. In thenetwork comparisons, the female network exhibited tighter connectivity, especially on GAD6 “Irritability” andGAD2 “Uncontrollable worry”, while only PHQ3 “Sleep” and PHQ9 “Suicidal ideation” had differences at thelocal level in the lower age group.CONCLUSIONSeveral interventions targeting excessive worry and sad mood could reduce the risk of depression and anxietysymptoms in the AIS population. Furthermore, specific anxiety symptoms in females, along with sleep disturbancesand suicidal ideation in the lower age group, should be addressed at an early stage to prevent significantdisruptions in mental health trajectories.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is...Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is imperative to adhere to standardized experiments and controls.This paper objectively reviews the origin,differentiation,and phenotypic and genetic differences between the C57BL/6 and BALB/c mouse substrains.Furthermore,an optimal selection strategy is proposed based on the genetic quality control technology to facilitate the precise application of these two mouse substrains.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time...The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time difference of repetitively PQS four-level and quasi-three-level lasers have been developed respectively.Then,according to the temporal criterion,the required conditions for repetitively PQS four-level and quasi-three-level lasers to achieve SLM operation are analyzed.The analysis results show that in addition to the short cavity is conducive to obtaining the pulsed SLM laser,the use of a lower pump power(compared to the threshold power)will help to obtain a longer pulse buildup-time difference and thus enabling the SLM operation.Moreover,it is worth noting that for the quasi-three-level lasers,the pulse buildup-time difference also depends on the initial population inversion density.The results also reveal that setting resonator parameters that can obtain large initial population inversion density will be helpful to the SLM operation in both four-level and quasithree-level regimes.In addition,the use of saturable absorber with a low absorption cross-section ratio between the excited state and ground state also contributes to the realization of the SLM.Finally,the optimization model of passively Q-switched single-longitudinal-mode laser is established.In addition to predicting the output performance of the laser,this model can also be used to obtain the optimal resonator parameters and the upper limit of pump power for SLM operation.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
文摘BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,two-dimensional(2D)coculture of macrophages and ADSCs can not accurately mimic the in vivo cell microenvironment.AIM To establish both 2D and 3D osteogenic coculture models to investigate the interaction between macrophages and ADSCs.METHODS After obtaining ADSCs from surgery and inducing differentiation of the THP1 cell line,we established 2D and 3D osteogenic coculture models.To assess the level of osteogenic differentiation,we used alizarin red staining and measured the relative expression levels of osteogenic differentiation markers osteocalcin,Runt-related transcription factor 2,and alkaline phosphatase through polymerase chain reaction.Verification was conducted by analyzing the expression changes of N-cadherin and the activation of the Wnt/β-catenin signaling pathway using western blotting.RESULTS In this study,it was discovered that macrophages in 3D culture inhibited osteogenic differentiation of ADSCs,contrary to the effect in 2D culture.This observation confirmed the significance of intricate intercellular connections in the 3D culture environment.Additionally,the 3D culture group exhibited significantly higher N-cadherin expression and showed reducedβ-catenin and Wnt1 protein levels compared to the 2D culture group.CONCLUSION Macrophages promoted ADSC osteogenic differentiation in 2D culture conditions but inhibited it in 3D culture.The 3D culture environment might inhibit the Wnt/β-catenin signaling pathway by upregulating N-cadherin expression,ultimately hindering the osteogenic differentiation of ADSCs.By investigating the process of osteogenesis in ADSCs,this study provides novel ideas for exploring 3D osteogenesis in ADSCs,fracture repair,and other bone trauma repair.
文摘BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimensional asphericity of the femoral head of asymptomatic pediatric hips.We hypothesized that femoral head asphericity will vary significantly between male and female pediatric hips and increase with age in both sexes.METHODS Computed tomography scans were obtained on 158 children and adolescents from a single institution in the United States(8-18 years;50%male)without hip pain.Proximal femoral measurements including the femoral head diameter,femoral head volume,residual volume,asphericity index,and local diameter difference were used to evaluate femoral head sphericity.RESULTS In both sexes,the residual volume increased by age(P<0.05).Despite significantly smaller femoral head size in older ages(>13 years)in females,there were no sex-differences in residual volume and aspherity index.There were no age-related changes in mean diameter difference in both sexes(P=0.07)with no significant sex-differences across different age groups(P=0.06).In contrast,there were significant increases in local aspherity(maximum diameter difference)across whole surface of the femoral head and all quadrants except the inferior regions in males(P=0.03).There were no sex-differences in maximum diameter difference at any regions and age group(P>0.05).Increased alpha angle was only correlated to increased mean diameter difference across overall surface of the femoral head(P=0.024).CONCLUSION There is a substantial localized asphericity in asymptomatic hips which increases with age in.While 2D measured alpha angle can capture overall asphericity of the femoral head,it may not be sensitive enough to represent regional asphericity patterns.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
文摘Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.
文摘The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ30817)Hunan Provincial Natural Science Foundation-Hengyang City Joint Fund Project(2025JJ70129)+1 种基金Changsha Natural Science Foundation(kq2403057)China。
文摘Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.
基金Supported by The Sanming Project of Medicine in Shenzhen,No.SZSM202211003Shenzhen-Hong Kong Jointly Funded Project,Shenzhen Science and Technology Program,No.SGDX20230116093645007+1 种基金Shenzhen Second People's Hospital Clinical Project,No.20243357003Shenzhen Medical Research Fund,No.B2303005.
文摘BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structure of depression and anxiety symptoms,with a focus on identifying differences at the symptom level between sex and age subgroups.METHODS A total of 1955 participants diagnosed with AIS aged 10-18 years were assessed using the Patient Health Questionnaire Depression Scale(PHO-9)and the Generalized Anxiety Disorder Scale(GAD-7),and 765 patients exhibiting PHQ-9 or GAD-7 scores ≥ 5 were enrolled in our study. Network analysis and network comparison tests were utilized toconstruct and compare the depression-anxiety symptoms networks among sex and age subgroups.RESULTSThe results revealed GAD3 “Excessive worry” and PHQ2 “Sad mood” were the most significant central symptomsin all subgroups, while “Sad mood” had higher strength than “Excessive worry” in the lower age group. In thenetwork comparisons, the female network exhibited tighter connectivity, especially on GAD6 “Irritability” andGAD2 “Uncontrollable worry”, while only PHQ3 “Sleep” and PHQ9 “Suicidal ideation” had differences at thelocal level in the lower age group.CONCLUSIONSeveral interventions targeting excessive worry and sad mood could reduce the risk of depression and anxietysymptoms in the AIS population. Furthermore, specific anxiety symptoms in females, along with sleep disturbancesand suicidal ideation in the lower age group, should be addressed at an early stage to prevent significantdisruptions in mental health trajectories.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金National Key R&D Program of China,Grant/Award Number:2021YFF0703200Key Technology Fund of the National Institutes for Food and Drug Control,Grant/Award Number:GJJS-2022-1-5。
文摘Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is imperative to adhere to standardized experiments and controls.This paper objectively reviews the origin,differentiation,and phenotypic and genetic differences between the C57BL/6 and BALB/c mouse substrains.Furthermore,an optimal selection strategy is proposed based on the genetic quality control technology to facilitate the precise application of these two mouse substrains.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金Project supported by National Natural Science Foundation of China(Grant No.62205102)。
文摘The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time difference of repetitively PQS four-level and quasi-three-level lasers have been developed respectively.Then,according to the temporal criterion,the required conditions for repetitively PQS four-level and quasi-three-level lasers to achieve SLM operation are analyzed.The analysis results show that in addition to the short cavity is conducive to obtaining the pulsed SLM laser,the use of a lower pump power(compared to the threshold power)will help to obtain a longer pulse buildup-time difference and thus enabling the SLM operation.Moreover,it is worth noting that for the quasi-three-level lasers,the pulse buildup-time difference also depends on the initial population inversion density.The results also reveal that setting resonator parameters that can obtain large initial population inversion density will be helpful to the SLM operation in both four-level and quasithree-level regimes.In addition,the use of saturable absorber with a low absorption cross-section ratio between the excited state and ground state also contributes to the realization of the SLM.Finally,the optimization model of passively Q-switched single-longitudinal-mode laser is established.In addition to predicting the output performance of the laser,this model can also be used to obtain the optimal resonator parameters and the upper limit of pump power for SLM operation.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.