期刊文献+
共找到7,879篇文章
< 1 2 250 >
每页显示 20 50 100
Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads
1
作者 Shengran Zhao Zhensong Li +2 位作者 Xiaotan Wei Yutong Wang Kai Zhao 《Computers, Materials & Continua》 2026年第1期1278-1291,共14页
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds... In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection. 展开更多
关键词 YOLOv8n PCB surface defect detection lightweight model small object detection
在线阅读 下载PDF
Optical design of wide-field and broadband light field camera for high-precision optical surface defect detection
2
作者 Chengchen Zhou Yukun Wang +7 位作者 Yue Ding Dacheng Wang Jiucheng Nie Jialong Li Zhixi Li Zheng Zhou Shuangshuang Zhang Xiaokun Wang 《Astronomical Techniques and Instruments》 2026年第1期64-74,共11页
To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of ... To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection. 展开更多
关键词 Optical design defect detection Wide-field camera Broadband light field camera
在线阅读 下载PDF
Artificial intelligence-aided semi-automatic joint trace detection from textured three-dimensional models of rock mass
3
作者 Seyedahmad Mehrishal Jineon Kim +1 位作者 Yulong Shao Jae Joon Song 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期1973-1985,共13页
It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens... It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass. 展开更多
关键词 Automatic trace detection Digital joint mapping Rock discontinuities characterization three-dimensional(3D)trace network
在线阅读 下载PDF
Weld defects detection method based on improved YOLOv5s 被引量:1
4
作者 Runchao Liu Jiyang Qi +1 位作者 Dongliang Shui Tang Ebolo Micheline Hortense 《China Welding》 2025年第2期119-131,共13页
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t... To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy. 展开更多
关键词 Weld defects detection Improved YOLOv5s scSE-ASFF Feature fusion
在线阅读 下载PDF
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT 被引量:1
5
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB defect detection Regression Loss Function
原文传递
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
6
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
Evaluation of On-Vehicle Bone-Conduct Acoustic Emission Detection for Rail Defects
7
作者 Lei Jia Jee Woong Park +2 位作者 Ming Zhu Yingtao Jiang Hualiang Teng 《Journal of Transportation Technologies》 2025年第1期95-121,共27页
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,... Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches. 展开更多
关键词 Railroad Infrastructure Rail defect detection Rail Health Monitoring Wavelet Analysis Acoustic Emission detection
在线阅读 下载PDF
CSDD:A Benchmark Dataset for Casting Surface Defect Detection and Segmentation
8
作者 Kai Mao Ping Wei +3 位作者 Yangyang Wang Meiqin Liu Shuaijie Wang Nanning Zheng 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期947-960,共14页
Automatic surface defect detection is a critical technique for ensuring product quality in industrial casting production.While general object detection techniques have made remarkable progress over the past decade,cas... Automatic surface defect detection is a critical technique for ensuring product quality in industrial casting production.While general object detection techniques have made remarkable progress over the past decade,casting surface defect detection still has considerable room for improvement.Lack of sufficient and high-quality data has become one of the most challenging problems for casting surface defect detection.In this paper,we construct a new casting surface defect dataset(CSDD)containing 2100 high-resolution images of casting surface defects and 56356 defects in total.The class and defect region for each defect are manually labeled.We conduct a series of experiments on this dataset using multiple state-of-the-art object detection methods,establishing a comprehensive set of baselines.We also propose a defect detection method based on YOLOv5 with the global attention mechanism and partial convolution.Our proposed method achieves superior performance compared to other object detection methods.Additionally,we also conduct a series of experiments with multiple state-of-the-art semantic segmentation methods,providing extensive baselines for defect segmentation.To the best of our knowledge,the CSDD has the largest number of defects for casting surface defect detection and segmentation.It would benefit both the industrial vision research and manufacturing applications.Dataset and code are available at https://github.com/Kerio99/CSDD. 展开更多
关键词 Casting surface defect dataset defect detection defect segmentation neural network
在线阅读 下载PDF
A review of concrete bridge surface defect detection based on deep learning
9
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
Enhanced surface defect detection of cylinder liners using Swin Transformer and YOLOv8
10
作者 Feng Pan Junqiang Li +3 位作者 Yonggang Yan Sihai Guan Bharat Biswal Yong Zhao 《Journal of Automation and Intelligence》 2025年第3期227-235,共9页
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw... The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection. 展开更多
关键词 Cylinder liner Surface defect detection Improved YOLOv8 Multiscale defects Swin Transformer
在线阅读 下载PDF
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
11
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 Surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
Steel surface defect detection based on lightweight YOLOv7
12
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
Gray Fabric Defect Detection Based on Statistical Template Matching
13
作者 LI Saisai YU Haiyan WANG Junhua 《Journal of Donghua University(English Edition)》 2025年第6期594-605,共12页
To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template match... To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template matching method incorporating fabric texture characteristics is proposed.Firstly,the template image set is evenly divided into N groups of sub-templates at the same positions to mitigate the effects of image illumination,reduce the model computation,and enhance the detection speed,with all image blocks being preprocessed.Then,the feature value information is extracted from the processed set of subtemplates at the same position,extracting two gray-level cooccurrence matrix(GLCM)feature values for each image block.These two feature values are then fused to construct a matching template.The mean feature value of all image blocks at the same position is calculated and used as the threshold for template detection,enabling automatic selection of template thresholds for different positions.Finally,the feature values of the image blocks in the experimental set are traversed and matched with subtemplates at the same positions to obtain fabric defect detection results.The detection experiments are conducted on a platform that simulates a fabric weaving environment,using defective gray fabrics from a weaving factory as the detected objects.The outcomes demonstrate the efficacy of the proposed method in detecting defects in gray fabrics,the mitigation of the impact of uneven external lighting on detection outcomes,and the enhancement of detection accuracy and adaptability. 展开更多
关键词 defect detection gray-level co-occurrence matrix(GLCM) template matching gray fabric feature extraction online detection
在线阅读 下载PDF
A fast surface-defect detection method based on Dense-YOLO network
14
作者 Fengqiang Gao Qingyuan Zhu +3 位作者 Guifang Shao Yukang Su Jianbo Yang Xinyue Yu 《CAAI Transactions on Intelligence Technology》 2025年第2期415-433,共19页
Efficient detection of surface defects is primary for ensuring product quality during manufacturing processes.To enhance the performance of deep learning-based methods in practical applications,the authors propose Den... Efficient detection of surface defects is primary for ensuring product quality during manufacturing processes.To enhance the performance of deep learning-based methods in practical applications,the authors propose Dense-YOLO,a fast surface defect detection network that combines the strengths of DenseNet and you only look once version 3(YOLOv3).The authors design a lightweight backbone network with improved densely connected blocks,optimising the utilisation of shallow features while maintaining high detection speeds.Additionally,the authors refine the feature pyramid network of YOLOv3 to increase the recall of tiny defects and overall positioning accuracy.Furthermore,an online multi-angle template matching technique is introduced based on normalised cross-correlation to precisely locate the detection area.This refined template matching method not only accelerates detection speed but also mitigates the influence of the background.To validate the effectiveness of our enhancements,the authors conduct comparative experiments across two private datasets and one public dataset.Results show that Dense-YOLO outperforms existing methods,such as faster R-CNN,YOLOv3,YOLOv5s,YOLOv7,and SSD,in terms of mean average precision(mAP)and detection speed.Moreover,Dense-YOLO outperforms networks inherited from VGG and ResNet,including improved faster R-CNN,FCOS,M2Det-320 and FRCN,in mAP. 展开更多
关键词 deep learning Dense-YOLO object detection surface defects template matching
在线阅读 下载PDF
YOLO-L:A High-Precision Model for Defect Detection in Lattice Structures
15
作者 Baosu Guo Hang Li +5 位作者 Shichen Ding Longhua Xu Meina Qu Dijia Zhang Yintang Wen Chuanzhen Huang 《Additive Manufacturing Frontiers》 2025年第2期185-193,共9页
High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical propert... High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures. 展开更多
关键词 defect detecting Metal lattice structure YOLO Additive manufacturing
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
16
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
The Application of Machine Vision in Defect Detection Systems
17
作者 Peihang Zhong Jiawei Lin Muling Wang 《Journal of Electronic Research and Application》 2025年第2期191-196,共6页
With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated produ... With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated production lines,especially in defect detection.Machine vision technology can be applied in many industries such as semiconductor,automobile manufacturing,aerospace,food,and drugs,which can significantly improve detection efficiency and accuracy,reduce labor costs,improve product quality,enhance market competitiveness,and provide strong support for the arrival of Industry 4.0 era.In this article,the concept,advantages,and disadvantages of machine vision and the algorithm framework of machine vision in the defect detection system are briefly described,aiming to promote the rapid development of industry and strengthen China’s industry. 展开更多
关键词 Machine vision defect detection system Image preprocessing
在线阅读 下载PDF
Deep learning-driven detection of lithium-plating-type defects for battery manufacturing via formation and capacity grading data
18
作者 Yunfeng Huang Hongchang Cai +8 位作者 Xin Lai Yuejiu Zheng Xuebing Han Dongsheng Ren Chaomin Yue Yuebo Yuan Mingwei Pu Quanwei Chen Minggao Ouyang 《Journal of Energy Chemistry》 2025年第9期536-549,I0014,共15页
Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection met... Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection methods during manufacturing is critical yet challenging.This study introduces a deep learning-based method for detecting lithium-plating-type defects using formation and capacity grading data,enabling accurate identification of defective batteries without additional equipment.First,lithiumplating-type defect batteries with various types and area ratios are fabricated.Formation and capacity grading data from 154 batteries(48 defective,106 normal)are collected to construct a dataset.Subsequently,a dual-task deep learning model is then developed,where the reconstruction task learns latent representations from the features,while the classification task identifies the defective batteries.Shapley value analysis further quantifies feature importance,revealing that defective batteries exhibit reduced coulombic efficiency(attributed to irreversible lithium loss)and elevated open-circuit voltage/K-values(linked to self-equalization effects).These findings align with the electrochemical mechanisms of lithium plating,enhancing the model's interpretability.Validated on statistically robust samples shows that the framework achieves a recall of 97.14%for defective batteries and an overall accuracy of 97.42%.This deep learning-driven solution provides a scalable and cost-effective quality control strategy for battery manufacturing. 展开更多
关键词 Lithium-ion batteries Manufacturing defect Lithium plating detection method Deep learning
在线阅读 下载PDF
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
19
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
Automated detection of multi-type defects of ultrasonic TFM images for aeroengine casing rings with complex sections based on deep learning
20
作者 Shanyue GUAN Xiaokai WANG +1 位作者 Lin HUA Qiuyue JIANG 《Chinese Journal of Aeronautics》 2025年第8期449-469,共21页
The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manua... The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manual analysis,which is susceptible to human omission,inconsistent results,and time-consumption.In this paper,a method for automated detection of defects is proposed for the ultrasonic Total Focusing Method(TFM)inspection of casing rings based on deep learning.First,the original datasets of defect images are established,and the Mask R-CNN is used to increase the number of defects in a single image.Then,the YOLOX-S-improved lightweight model is proposed,and the feature extraction network is replaced by Faster Net to reduce redundant computations.The Super-Resolution Generative Adversarial Network(SRGAN)and Convolutional Block Attention Module(CBAM)are integrated to improve the identification precision.Finally,a new test dataset is created by ultrasonic TFM inspection of an aeroengine casing ring.The results show that the mean of Average Precision(m AP)of the YOLOX-S-improved model reaches 99.17%,and the corresponding speed reaches 77.6 FPS.This study indicates that the YOLOX-S-improved model performs better than conventional object detection models.And the generalization ability of the proposed model is verified by ultrasonic B-scan images. 展开更多
关键词 Casing ring Ultrasonic inspection defect imageDeep learning Automated detection
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部