期刊文献+
共找到12,017篇文章
< 1 2 250 >
每页显示 20 50 100
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
1
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Failure microscopic mechanism and damage constitutive model of dolomite under water-rock coupling interaction
2
作者 SUN Xiao-ming ZHANG Jing +6 位作者 SHI Fu-kun HE Lin-sen ZHANG Yong MIAO Cheng-yu DING Jia-xu MA Li-sha ZHAO Hao-ze 《Journal of Central South University》 2025年第4期1431-1446,共16页
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev... To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability. 展开更多
关键词 water-rock coupling DOLOMITE constitutive model MICROSTRUCTURE loading-unloading cycle
在线阅读 下载PDF
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
3
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
4
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
5
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex Computational modeling coupling relationships DEPRESSION Emotion and cognition
原文传递
New insights on generalized heat conduction and thermoelastic coupling models
6
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
Optimal Coupling Height of the Atmosphere and Land Surface——An Earth System Modeling Perspective
7
作者 Shaofeng LIU Xubin ZENG +6 位作者 Yongjiu DAI Hua YUAN Nan WEI Zhongwang WEI Xingjie LU Shupeng ZHANG Michael A.BRUNKE 《Advances in Atmospheric Sciences》 2025年第3期417-426,共10页
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the... In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories. 展开更多
关键词 surface flux estimate reference height land surface modeling atmosphere-land surface coupling large-eddy simulation
在线阅读 下载PDF
Simulation of the future evolution track of“production-living-ecological”space in a coastal city based on multimodel coupling and wetland protection scenarios
8
作者 Yitong Yin Rongjin Yang +5 位作者 Zechen Song Yuying Zhang Yanrong Lu Le Zhang Meiying Sun Xiuhong Li 《Geography and Sustainability》 2025年第3期51-63,共13页
Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con... Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis. 展开更多
关键词 Wetland protection “Production-living-ecological”space coupling model Driving mechanism Coordinated and sustainable development
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
9
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
10
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic Gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
11
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators 被引量:1
12
作者 Daisuke Ishihara Prakasha Chigahalli Ramegowda +1 位作者 Shoichi Aikawa Naoki Iwamaru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1187-1206,共20页
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron... This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior. 展开更多
关键词 Piezoelectric coupling effect piezoelectric bimorph actuator weak coupling strong coupling three-dimensional finite element analysis
在线阅读 下载PDF
Mechanical response analysis of asphalt pavement considering top-down crack based on FDM-DEM coupling simulation 被引量:2
13
作者 Min Wang Xin Yu Chen Chen 《Journal of Road Engineering》 2025年第1期92-105,共14页
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di... The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack. 展开更多
关键词 Full-scale pavement structure Top-down crack FDM-DEM coupling model Mechanical response
在线阅读 下载PDF
Coupling and Spatial Disparities of Regional Economy and Ecosystem in High-Quality Town Development 被引量:2
14
作者 Xinyi Ren Xiaowen Tan +2 位作者 Dan Luo Rongxin Lu Chien-Chi Chu 《Research in Ecology》 2025年第1期15-29,共15页
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan... This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination. 展开更多
关键词 Regional Economies Ecological Environment coupling Coordination Degree Spatiotemporal Distribution Characteristics Relative Development model
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
15
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
16
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
17
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
18
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
暂未订购
Mechanical behavior and damage constitutive model of sandstone under hydro-mechanical (H-M) coupling 被引量:1
19
作者 Tao Tan Chunyang Zhang +1 位作者 Yanlin Zhao Xiaoshuang Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期837-853,共17页
Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ... Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems. 展开更多
关键词 H-M coupling Water-saturated sandstone Mechanical mechanism Energy evolution D-C model
在线阅读 下载PDF
Assessing the interaction of cross-city patient mobility and the coupling relationship between supply and demand of healthcare in China
20
作者 XIANG Bowen WEI Wei +1 位作者 GUO Fang HONG Mengyao 《Journal of Geographical Sciences》 2025年第4期867-885,共19页
The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The ... The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The present study constructed the 2023Cross-City Patient Mobility Network in China using one million patient mobility data records obtained from online healthcare platforms. We applied urban network analysis to uncover mobility patterns and used the coupling coordination degree model to assess healthcare supply-demand relationships before and after patient mobility. Explainable machine learning further revealed the impact of supply-demand coupling on patient mobility. The results indicated the following: Patient mobility followed administrative boundaries, although megacities serve areas beyond provincial borders;The scale of healthcare supply and demand displayed a multi-centric spatial pattern with a general decline from east to west, and these characteristics of demand distribution were further solidified by patient mobility;Cities with low supply-demand coupling and undersupply experienced patient outflows, while cities with high coupling and oversupply attracted them. In turn, patient mobility helped balance healthcare supply and demand, optimising the coupling relationship across cities. Thus, this research not only provides a methodological reference for understanding the interaction between patient mobility and healthcare systems but also offers empirical insights for public health policy. 展开更多
关键词 cross-city patient mobility healthcare services coupling coordination degree model coupling relationship spatial analysis
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部