The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
Objective: to investigate the nursing effect of continuous improvement of intestinal preparation (CQI) in three-dimensional intestinal CT imaging. Methods: a total of 60 patients who underwent intestinal three-dimensi...Objective: to investigate the nursing effect of continuous improvement of intestinal preparation (CQI) in three-dimensional intestinal CT imaging. Methods: a total of 60 patients who underwent intestinal three-dimensional CT examination in our hospital from January 2019 to January 2021 were selected and divided into two groups according to random number table method, with 30 patients in each group. The control group was given routine nursing intervention, and the observation group was given intestinal preparation continuous improvement intervention. The success rate of examination, awareness rate before examination, satisfaction rate of image quality and complications were compared between the two groups. Results: the success rate and awareness rate before examination in the observation group were higher than those in the control group, and the difference was statistically significant (P < 0.05). The satisfaction rate of image quality in the observation group was higher than that in the control group, and the incidence of complications in the observation group was lower than that in the control group, with statistical significance (P < 0.05). Conclusion: intestinal preparation CQI intervention can improve the success rate of intestinal three-dimensional CT examination, improve the knowledge of patients, enhance the quality of CT imaging, and reduce the incidence of complications.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated wi...To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.展开更多
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actu...Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.展开更多
With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging meth...With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results.展开更多
Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic da...Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.展开更多
An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable...An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.展开更多
The oscillating voltage test is a nondestructive detection method for partial discharge of XLPE (cross linked polyethylene) cable and has been applied recently. This paper made three kinds of varying severity artifi...The oscillating voltage test is a nondestructive detection method for partial discharge of XLPE (cross linked polyethylene) cable and has been applied recently. This paper made three kinds of varying severity artificial defect models of cable joints in 10 kV XLPE cable. Oscillating voltage is applied to the model, by use of pulse current method to detect partial discharge signals. In order to study the statistical characteristics of partial discharge of cable joint under the oscillating voltage, three-dimensional statistical map has been made. The results show that for the same kind of defects, with the increases of the defect severity, the discharge interval extended, the magnitude and the number of partial discharge increase, for different kinds of defects, obvious differences exist among the maps, this may established a foundation for the further study of the partial discharge pattern recognition of XLPE cable under oscillating voltage.展开更多
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
文摘Objective: to investigate the nursing effect of continuous improvement of intestinal preparation (CQI) in three-dimensional intestinal CT imaging. Methods: a total of 60 patients who underwent intestinal three-dimensional CT examination in our hospital from January 2019 to January 2021 were selected and divided into two groups according to random number table method, with 30 patients in each group. The control group was given routine nursing intervention, and the observation group was given intestinal preparation continuous improvement intervention. The success rate of examination, awareness rate before examination, satisfaction rate of image quality and complications were compared between the two groups. Results: the success rate and awareness rate before examination in the observation group were higher than those in the control group, and the difference was statistically significant (P < 0.05). The satisfaction rate of image quality in the observation group was higher than that in the control group, and the incidence of complications in the observation group was lower than that in the control group, with statistical significance (P < 0.05). Conclusion: intestinal preparation CQI intervention can improve the success rate of intestinal three-dimensional CT examination, improve the knowledge of patients, enhance the quality of CT imaging, and reduce the incidence of complications.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
文摘To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.
文摘Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.
文摘With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results.
基金supported by the National Natural Science Foundation of China (Nos. 41304096, 41230318)National High-tech R&D Program of China (863 Program) (No. 2013AA0925010201)+1 种基金Foundation of Ministry of Education of China (No. 20130132120014)the Fundamental Research Funds for the Central Universities (Nos. 1313017, 1362013)
文摘Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
文摘An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.
文摘The oscillating voltage test is a nondestructive detection method for partial discharge of XLPE (cross linked polyethylene) cable and has been applied recently. This paper made three kinds of varying severity artificial defect models of cable joints in 10 kV XLPE cable. Oscillating voltage is applied to the model, by use of pulse current method to detect partial discharge signals. In order to study the statistical characteristics of partial discharge of cable joint under the oscillating voltage, three-dimensional statistical map has been made. The results show that for the same kind of defects, with the increases of the defect severity, the discharge interval extended, the magnitude and the number of partial discharge increase, for different kinds of defects, obvious differences exist among the maps, this may established a foundation for the further study of the partial discharge pattern recognition of XLPE cable under oscillating voltage.