Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened.Therefore,to accurately evaluat...Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened.Therefore,to accurately evaluate the stress concentration factor and stress fields at holes is of essential importance for structure design and service life prediction.Although stress and strain concentration and fields at holes in finite thickness plates strongly change with and along the thickness,manuals of stress concentration for engineering design are mainly based on twodimensional theory and no explicit formula is available even for circular holes in finite thickness plates.Here we obtain for the first time a complete set of explicit formulae for stress and strain concentration factors and the out-of-plane constraint factor at circular as well as elliptical holes in finite thickness plates by integrating comprehensive three-dimensional finite element analyses and available theoretical solutions.The three-dimensional stress distributions ahead of holes can also be predicted by the obtained formulae.With their accuracy and the corresponding applicable range being analyzed and outlined in detail,the formulae can serve as an important fundamental solution for three-dimensional engineering structure design and guideline for developing threedimensional analytical methods.展开更多
In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and ...In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.展开更多
Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an anal...Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.展开更多
A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters...A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters were optimized in riew of the layer thickness, spucing between printed lines, flow rate of liquid binder and the fast axis speed. The prepared DDD prototype consists of a double-layer structure, of which the upper region is a reservoir system and the lower region is a matrix one. The in vitro release test revealed that LVFX was released in a dual-puse pattern. This DDD may present a new strategy for the prophylaxis and treatment of diseases such as bone infection in the near future.展开更多
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the ...In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To c...BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To comprehensively evaluate the impact of three-dimensional(3D)visualization technology on enhancing surgical precision and safety,as well as optimizing perioperative outcomes in laparoscopic sigmoid cancer resection.METHODS A prospective cohort of 106 patients(January 2023 to December 2024)undergoing laparoscopic sigmoid cancer resection was divided into the 3D(n=55)group and the control(n=51)group.The 3D group underwent preoperative enhanced computed tomography reconstruction(3D Slicer 5.2.2&Mimics 19.0).3D reconstruction visualization navigation intraoperatively guided the following key steps:Tumor location,Toldt’s space dissection,IMA ligation level selection,regional lymph node dissection,and marginal artery preservation.Outcomes included operative parameters,lymph node yield,and recovery metrics.RESULTS The 3D group demonstrated a significantly shorter operative time(172.91±20.69 minutes vs 190.29±32.29 minutes;P=0.002),reduced blood loss(31.5±11.8 mL vs 44.1±23.4 mL,P=0.001),earlier postoperative flatus(2.23±0.54 days vs 2.53±0.61 days;P=0.013),shorter hospital length of stay(13.47±1.74 days vs 16.20±7.71 days;P=0.013),shorter postoperative length of stay(8.6±2.6 days vs 10.5±4.9 days;P=0.014),and earlier postoperative exhaust time(2.23±0.54 days vs 2.53±0.61 days;P=0.013).Furthermore,the 3D group exhibited a higher mean number of lymph nodes harvested(16.91±5.74 vs 14.45±5.66;P=0.030).CONCLUSION The 3D visualization technology effectively addresses sigmoid colon anatomical complexity through surgical navigation,improving procedural safety and efficiency.展开更多
This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress condition...This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress conditions.Erichsen cupping tests were conducted to quantitatively evaluate the deformation capacity at room temperature(298 K)and cryogenic temperatures.The findings reveal a strong temperature dependence on the formability of the HEA.A decrease in the deformation temperature from 298 to 93 K causes a significant increase in both the Erichsen index(IE)(from 9.8 to 12.4 mm)and the expansion rate(δ)of surface area(from 51.6%to 76.3%),as well as a reduction in the average deviation(η)of thickness(from 55.1%to 44.4%),signifying its ultrahigh formability and uniform deformation capability at cryogenic temperature.This enhancement is attributed to the transition in the deformation mechanism from single dislocation slip at 298 K to a cooperative of plastic deformation mechanisms at 93 K,involving dislocation slip,stacking faults(SFs),Lomer-Cottrell(L-C)locks and multi-scale nanotwins.The lower stacking fault energy of the alloy facilitates these deformation mechanisms,particularly the formation of SFs and nanotwins,which enhance ductility and strength by providing additional pathways for plastic deformation.These mechanisms collectively contribute to delaying plastic instability,thereby improving the overall formability.This work provides a comprehensive understanding of the underlying reasons for the enhanced formability of HEAs at cryogenic temperatures,offering valuable insights for their practical use in challenging environments.展开更多
As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary ...As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.展开更多
The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59...The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59(13) A^3, D, = 1.714 g/cm^3,μ(MoKa) = 0.974 mm^-1, F(000) = 374, R1 (1255 observed reflections (Ⅰ 〉 2σ(Ⅰ)) = 0.0250) and wR2 = 0.0662 (all data). In this paper, we report the complexation of Mn(Ⅱ) by the bidentate ligand 2-hydroxynicotinic acid (HNic). In the crystal the Mn(Ⅱ) ion exhibits a deformed octahedron structure. The title complex Mn(H2O)2(HNic)2 has a three-dimensional (3D) network structure extended by hydrogen bonds, which are formed by two typical eight-membered hydrogen-bonded rings.展开更多
The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane an...The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.展开更多
This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack...This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.展开更多
By making use of the direct integration method,an exact analysis of the general three-dimensional thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local ...By making use of the direct integration method,an exact analysis of the general three-dimensional thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local thermal and force loadings.The material plane of isotropy is assumed to be parallel to the limiting surface of the halfspace.By reducing the original thermoelasticity equations to the governing ones for individual stress-tensor components,the effect of material anisotropy in the stress field is analyzed with regard to the feasibility requirement,i.e.,the finiteness of the stress field at a distance from the disturbed area.As a result,the solution is constructed in the form of explicit analytical dependencies on the force and thermal loadings for various kinds of transversely isotropic materials and agrees with the basic principles of the continua mechanics.The solution can be efficiently used as a benchmark one for the direct computation of temperature and thermal stresses in transversely isotropic semi-infinite domains,as well as for the verification of solutions constructed by different means.展开更多
Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the...Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, t55Gd, and 237Np Mtissbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds. In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3 · 2H2O (pta = 1,1,1 -trifluoro-5,5-dimethy 1-2,4-hexanedione) and Gd(bfa)3 · 2H2O (bfa = 1, 1, 1 -trifluoro-4-phenyl-2-4-butanedione) were reported. Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3 · 2H2O crystallizes in the P 2 1/n (#14) monoclinic space group and its lattice parameters are a = 1.4141(6) nm, b = 1.0708(3) nm, c =2.2344(4) nm, β =952.4(2)°, and Gd(bfa)3· 2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a = 1.322 (1) nm, b = 2.295 (1) nm, c = 1. 0786(8) nm. In the meantime, the authors had finished a systematic investigation on the ^155Gd Mossbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen. A tendency for the 6 value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed. This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the lisands donating electrons to 6s, 5d, and 4f orbitals of Gd.展开更多
The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalue...The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .展开更多
The novel benzo-18-crown-6(B18-C-6)complex;{[Na(Bl8-C-6)]_(6)[Pt(SCN)_(6)]}[Pt(SCN)_(6)](SCN)_(2)(1)was synthesized and characterized by elemental analysis,IR spectrum and x-ray diffraction analysis.Thr crystal struct...The novel benzo-18-crown-6(B18-C-6)complex;{[Na(Bl8-C-6)]_(6)[Pt(SCN)_(6)]}[Pt(SCN)_(6)](SCN)_(2)(1)was synthesized and characterized by elemental analysis,IR spectrum and x-ray diffraction analysis.Thr crystal structure belongs to rhomobohedral,space group R-3 with cell dimesions:a=6=1.9933(3),c=2.9760(6)nm,α=β=90,γ=120°,V=10.240(3)nm^(3),Z=3,A,aclcd=1.564 g/cm^(3),F(000)=4908.1 is composed of one{[Na(B18-C-6)]_(6)[Pt(SCN)_(6)]}4+complex cation,one[Pt(SCN)_(6)]^(2-)complex anion and two SCN~anions.{[Na(B18-C-6)]_(6)[Pt(SCN)_(6)3}4+complex cation shows a three-dimensional network structure bridged by Na-O interactions between adjacent[Na(B18-C-6)]+units.The function of[Pt(SCN)_(6)]^(2-)complex anion and two SCN'anions are balancing charge in crystal.展开更多
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ...Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For th...Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.展开更多
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity puri...The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins,thereby forming three types of plant-specific histone deacetylase complexes,which we named SANT,ESANT,and ARID.RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes.HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation.We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and-independent mechanisms.In the mutants of histone deacetylase complexes,the expression of a number of stressinduced genes is up-regulated,and several mutants of the histone deacetylase complexes show severe retardation in growth.Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance,we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.展开更多
基金supported by the National Natural Science Foundation of China(51535005,51472117)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-I-0418K01,MCMS-I-0418Y01,MCMS-0417G02,MCMS-0417G03)+1 种基金the Fundamental Research Funds for the Central Universities(NP2017101,NC2018001)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.The authors would like to thank Dr.Chongmin She for helpful discussions.
文摘Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened.Therefore,to accurately evaluate the stress concentration factor and stress fields at holes is of essential importance for structure design and service life prediction.Although stress and strain concentration and fields at holes in finite thickness plates strongly change with and along the thickness,manuals of stress concentration for engineering design are mainly based on twodimensional theory and no explicit formula is available even for circular holes in finite thickness plates.Here we obtain for the first time a complete set of explicit formulae for stress and strain concentration factors and the out-of-plane constraint factor at circular as well as elliptical holes in finite thickness plates by integrating comprehensive three-dimensional finite element analyses and available theoretical solutions.The three-dimensional stress distributions ahead of holes can also be predicted by the obtained formulae.With their accuracy and the corresponding applicable range being analyzed and outlined in detail,the formulae can serve as an important fundamental solution for three-dimensional engineering structure design and guideline for developing threedimensional analytical methods.
基金Project supported by the National Natural Science Foundation of China(Nos.11922209,11991031 and 12021002)。
文摘In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.
基金ItemSponsored by National Natural Science Foundation of China (50474015)
文摘Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.
文摘A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters were optimized in riew of the layer thickness, spucing between printed lines, flow rate of liquid binder and the fast axis speed. The prepared DDD prototype consists of a double-layer structure, of which the upper region is a reservoir system and the lower region is a matrix one. The in vitro release test revealed that LVFX was released in a dual-puse pattern. This DDD may present a new strategy for the prophylaxis and treatment of diseases such as bone infection in the near future.
基金supported by the Science and Technology Development Project of Jilin Province in China,No.20110492
文摘In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金Supported by the Health Commission of Fuyang City,Anhui,China,No.FY2023-45Fuyang Municipal Science and Technology Bureau,Anhui,China,No.FK20245505+1 种基金Anhui Provincial Health Commission,No.AHWJ2023Baa20164Bengbu Medical University,No.2023byzd215.
文摘BACKGROUND Sigmoid colon cancer faces challenges due to anatomical diversity,including variable inferior mesenteric artery(IMA)branching and tumor localization complexities,which increase intraoperative risks.AIM To comprehensively evaluate the impact of three-dimensional(3D)visualization technology on enhancing surgical precision and safety,as well as optimizing perioperative outcomes in laparoscopic sigmoid cancer resection.METHODS A prospective cohort of 106 patients(January 2023 to December 2024)undergoing laparoscopic sigmoid cancer resection was divided into the 3D(n=55)group and the control(n=51)group.The 3D group underwent preoperative enhanced computed tomography reconstruction(3D Slicer 5.2.2&Mimics 19.0).3D reconstruction visualization navigation intraoperatively guided the following key steps:Tumor location,Toldt’s space dissection,IMA ligation level selection,regional lymph node dissection,and marginal artery preservation.Outcomes included operative parameters,lymph node yield,and recovery metrics.RESULTS The 3D group demonstrated a significantly shorter operative time(172.91±20.69 minutes vs 190.29±32.29 minutes;P=0.002),reduced blood loss(31.5±11.8 mL vs 44.1±23.4 mL,P=0.001),earlier postoperative flatus(2.23±0.54 days vs 2.53±0.61 days;P=0.013),shorter hospital length of stay(13.47±1.74 days vs 16.20±7.71 days;P=0.013),shorter postoperative length of stay(8.6±2.6 days vs 10.5±4.9 days;P=0.014),and earlier postoperative exhaust time(2.23±0.54 days vs 2.53±0.61 days;P=0.013).Furthermore,the 3D group exhibited a higher mean number of lymph nodes harvested(16.91±5.74 vs 14.45±5.66;P=0.030).CONCLUSION The 3D visualization technology effectively addresses sigmoid colon anatomical complexity through surgical navigation,improving procedural safety and efficiency.
基金supported by the National Natural Science Foundation of China(Nos.52371025 and 52371106)Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030001)Shenzhen Fund 2021 Basic Research General Programme(No.JCYJ20210324115400002).
文摘This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress conditions.Erichsen cupping tests were conducted to quantitatively evaluate the deformation capacity at room temperature(298 K)and cryogenic temperatures.The findings reveal a strong temperature dependence on the formability of the HEA.A decrease in the deformation temperature from 298 to 93 K causes a significant increase in both the Erichsen index(IE)(from 9.8 to 12.4 mm)and the expansion rate(δ)of surface area(from 51.6%to 76.3%),as well as a reduction in the average deviation(η)of thickness(from 55.1%to 44.4%),signifying its ultrahigh formability and uniform deformation capability at cryogenic temperature.This enhancement is attributed to the transition in the deformation mechanism from single dislocation slip at 298 K to a cooperative of plastic deformation mechanisms at 93 K,involving dislocation slip,stacking faults(SFs),Lomer-Cottrell(L-C)locks and multi-scale nanotwins.The lower stacking fault energy of the alloy facilitates these deformation mechanisms,particularly the formation of SFs and nanotwins,which enhance ductility and strength by providing additional pathways for plastic deformation.These mechanisms collectively contribute to delaying plastic instability,thereby improving the overall formability.This work provides a comprehensive understanding of the underlying reasons for the enhanced formability of HEAs at cryogenic temperatures,offering valuable insights for their practical use in challenging environments.
基金Supported by National Science and Technology Major Project of China(Grant No.2011ZX04002-101)National Science and Technology Support Plan of China(Grant No.2011BAF15B02)National Natural Science Foundation of China(Grant No.51305388)
文摘As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.
基金This work was supported by the National Natural Science Foundation of China (No. 50572040)
文摘The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59(13) A^3, D, = 1.714 g/cm^3,μ(MoKa) = 0.974 mm^-1, F(000) = 374, R1 (1255 observed reflections (Ⅰ 〉 2σ(Ⅰ)) = 0.0250) and wR2 = 0.0662 (all data). In this paper, we report the complexation of Mn(Ⅱ) by the bidentate ligand 2-hydroxynicotinic acid (HNic). In the crystal the Mn(Ⅱ) ion exhibits a deformed octahedron structure. The title complex Mn(H2O)2(HNic)2 has a three-dimensional (3D) network structure extended by hydrogen bonds, which are formed by two typical eight-membered hydrogen-bonded rings.
基金Supported by the National Natural Science Foundation of China(11372269,10902057)
文摘The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.
基金The project supported by the National Natural Science Foundation of China (K19672007)
文摘This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.
基金supported by Joint Fund of Advanced Aerospace Manufacturing Technology Research(No. U1937601)the partial financial support of this research by the budget program of Ukraine“Support for the Development of Priority Research Areas”(No.CPCEC 6451230)。
文摘By making use of the direct integration method,an exact analysis of the general three-dimensional thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local thermal and force loadings.The material plane of isotropy is assumed to be parallel to the limiting surface of the halfspace.By reducing the original thermoelasticity equations to the governing ones for individual stress-tensor components,the effect of material anisotropy in the stress field is analyzed with regard to the feasibility requirement,i.e.,the finiteness of the stress field at a distance from the disturbed area.As a result,the solution is constructed in the form of explicit analytical dependencies on the force and thermal loadings for various kinds of transversely isotropic materials and agrees with the basic principles of the continua mechanics.The solution can be efficiently used as a benchmark one for the direct computation of temperature and thermal stresses in transversely isotropic semi-infinite domains,as well as for the verification of solutions constructed by different means.
基金Project supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan andin Part by the Inter-University Joint Research Program for the Common Use of JAERI (Japan Atomic Energy Research Institute)Facilities
文摘Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, t55Gd, and 237Np Mtissbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds. In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3 · 2H2O (pta = 1,1,1 -trifluoro-5,5-dimethy 1-2,4-hexanedione) and Gd(bfa)3 · 2H2O (bfa = 1, 1, 1 -trifluoro-4-phenyl-2-4-butanedione) were reported. Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3 · 2H2O crystallizes in the P 2 1/n (#14) monoclinic space group and its lattice parameters are a = 1.4141(6) nm, b = 1.0708(3) nm, c =2.2344(4) nm, β =952.4(2)°, and Gd(bfa)3· 2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a = 1.322 (1) nm, b = 2.295 (1) nm, c = 1. 0786(8) nm. In the meantime, the authors had finished a systematic investigation on the ^155Gd Mossbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen. A tendency for the 6 value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed. This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the lisands donating electrons to 6s, 5d, and 4f orbitals of Gd.
文摘The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .
文摘The novel benzo-18-crown-6(B18-C-6)complex;{[Na(Bl8-C-6)]_(6)[Pt(SCN)_(6)]}[Pt(SCN)_(6)](SCN)_(2)(1)was synthesized and characterized by elemental analysis,IR spectrum and x-ray diffraction analysis.Thr crystal structure belongs to rhomobohedral,space group R-3 with cell dimesions:a=6=1.9933(3),c=2.9760(6)nm,α=β=90,γ=120°,V=10.240(3)nm^(3),Z=3,A,aclcd=1.564 g/cm^(3),F(000)=4908.1 is composed of one{[Na(B18-C-6)]_(6)[Pt(SCN)_(6)]}4+complex cation,one[Pt(SCN)_(6)]^(2-)complex anion and two SCN~anions.{[Na(B18-C-6)]_(6)[Pt(SCN)_(6)3}4+complex cation shows a three-dimensional network structure bridged by Na-O interactions between adjacent[Na(B18-C-6)]+units.The function of[Pt(SCN)_(6)]^(2-)complex anion and two SCN'anions are balancing charge in crystal.
基金supported bythe National Natural Science Foundation of China(Grant Nos.50579006,50639010 and 50909014)
文摘Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金supported by the National Natural Science Foundation of China(Nos.11362018,11261045,and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.
基金supported by the National Natural Science Foundation of China(32025003)by the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology。
文摘The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins,thereby forming three types of plant-specific histone deacetylase complexes,which we named SANT,ESANT,and ARID.RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes.HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation.We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and-independent mechanisms.In the mutants of histone deacetylase complexes,the expression of a number of stressinduced genes is up-regulated,and several mutants of the histone deacetylase complexes show severe retardation in growth.Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance,we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.