The development of the three-component catalytic system for constructing isoindolinones from simple feedstocks is both significant and challenging.In this study,a unique tartrate-linked dimeric samarium-antimonotungst...The development of the three-component catalytic system for constructing isoindolinones from simple feedstocks is both significant and challenging.In this study,a unique tartrate-linked dimeric samarium-antimonotungstate[Sm_(2)(H_(2)O)_(6)(tar)(Sb_(2)W_(21)O_(72))]_(2)^(20-)(Sm_(4)tar_(2),H_(4)tar=tartaric acid)was synthesized via a one-step method at room temperature using an acetate buffer solution.The dimeric polyanion of Sm4tar2shows a centrosymmetric structure with a parallelogram-like arrangement and comprises two enantiomeric{Sm_(2)(H_(2)O)_(6)(Sb_(2)W_(21)O_(72))}moieties connected by two enantiomeric tar ligands.Sm_(4)tar_(2)demonstrates efficient catalytic activity in the three-component reaction involving 2-acylbenzoic acids,primary amines,and phosphine oxides to form 3,3-disubstituted isoindolinones.The advantages of this catalytic system include simple feedstocks,green and reusable catalyst,and operational simplicity with water as the sole by-product.This finding enables an effective molecular fragment assembly strategy for synthesizing isoindolinone drug precursor skeletons.展开更多
Introducing PT-symmetric generalized Scarf-Ⅱpotentials into the three-coupled nonlinear Gross-Pitaevskii equations offers a new way to seek stable soliton states in quasi-onedimensional spin-1 Bose-Einstein condensat...Introducing PT-symmetric generalized Scarf-Ⅱpotentials into the three-coupled nonlinear Gross-Pitaevskii equations offers a new way to seek stable soliton states in quasi-onedimensional spin-1 Bose-Einstein condensates.In scenarios where the spin-independent parameter c_(0)and the spin-dependent parameter c_(2)vary,we use both analytical and numerical methods to investigate the three-coupled nonlinear Gross-Pitaevskii equations with PT-symmetric generalized Scarf-Ⅱpotentials.We obtain analytical soliton states and find that simply modulating c_(2)may change the analytical soliton states from unstable to stable.Additionally,we obtain numerically stable double-hump soliton states propagating in the form of periodic oscillations,exhibiting distinct behavior in energy exchange.For further investigation,we discuss the interaction of numerical double-hump solitons with Gaussian solitons and observe the transfer of energy among the three components.These findings may contribute to a deeper understanding of solitons in Bose-Einstein condensates with PT-symmetric potentials and may hold significance for both theoretical understanding and experimental design in related physics experiments.展开更多
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ...The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.展开更多
To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring ...To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may...Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.展开更多
As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This stud...As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.展开更多
A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction c...A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction could occur under photocatalyst-and additive-free conditions to afford a number of organic thiocyanates with moderate to good yield and favorable functional group tolerance.展开更多
We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the micr...We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.展开更多
Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is...Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.展开更多
A series of new hexahydroimidazo[1,2-a]pyridine derivatives were synthesized via convenient and practical three-component reactions. Preliminary bioassays showed that majority of the target compounds exhibited moderat...A series of new hexahydroimidazo[1,2-a]pyridine derivatives were synthesized via convenient and practical three-component reactions. Preliminary bioassays showed that majority of the target compounds exhibited moderate to excellent insecticidal activity against cowpea aphids (Aphis craccivora). Among them, compound 91 demonstrated significant activity with LCso value of 0.00918 mmol/L which was about 3.8-fold higher than that of imidacloprid (IMI). Furthermore, the study of stereostructure-activity relationship of four isomers of 9k indicated that configuration played a key role in insecticidal activity of these compounds.展开更多
A facile and metal-free visible-light-enabled three-component reaction of quinoxalin-2(1 H)-ones,alkenes and CF_(3)SO_(2)Na has been developed under air at room temperature.This photocatalytic tandem reaction using 4 ...A facile and metal-free visible-light-enabled three-component reaction of quinoxalin-2(1 H)-ones,alkenes and CF_(3)SO_(2)Na has been developed under air at room temperature.This photocatalytic tandem reaction using 4 CzIPN as the photocatalyst and air as the green oxidant,provides a mild and environmentally friendly approach to access a series of 3-trifluoroalkylated quinoxalin-2(1 H)-ones.展开更多
The functionalized spiro[indoline-3,40-pyrano[3,2-h]quinolines] were efficiently prepared in high yields from three-component reaction of 8-hydroxyquinoline, isatins and malononitrile or ethyl cyanoacetate in ethanol ...The functionalized spiro[indoline-3,40-pyrano[3,2-h]quinolines] were efficiently prepared in high yields from three-component reaction of 8-hydroxyquinoline, isatins and malononitrile or ethyl cyanoacetate in ethanol at room temperature for about 12 h in the presence of piperidine.展开更多
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermedia...The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles.展开更多
A simple and metal-free method has been developed for the construction of quinoline-2,4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxyla...A simple and metal-free method has been developed for the construction of quinoline-2,4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxylate, and a-ketoesters. The present protocol provides a convenient and attractive approach to various quinoline-2,4-carboxylates in moderate to good yields with excellent functional group tolerance.展开更多
Potassium tert-butoxide has been found to be a highly efficient catalyst for one-pot,three-component reaction of aryl aldehydes, acetophenones,and thiols via Claisen-Schmidt/Michael addition reactions for the synthesi...Potassium tert-butoxide has been found to be a highly efficient catalyst for one-pot,three-component reaction of aryl aldehydes, acetophenones,and thiols via Claisen-Schmidt/Michael addition reactions for the synthesis of thia-Michael adducts in high yields. The reactions are best carried out in tert-butyl alcohol at room temperature.展开更多
A H_(4)SiW_(12)O_(40)-catalyzed three-component tandem reaction of 2-acylbenzoic acids,primary amines and phosphine oxides to form 3,3-disubstituted isoindolinones was developed.By employing A H_(4)SiW_(12)O_(40)as th...A H_(4)SiW_(12)O_(40)-catalyzed three-component tandem reaction of 2-acylbenzoic acids,primary amines and phosphine oxides to form 3,3-disubstituted isoindolinones was developed.By employing A H_(4)SiW_(12)O_(40)as the catalyst and dimethyl carbonate(DMC)as the solvent,a diverse range of 2-acylbenzoic acid derivatives and primary amines worked well to give the C3-phosphinoyl-functionalized 3,3-disubstituted isoindolinones with the yield range of 61%-87%.Advantages of this transformation include green catalyst and solvent,available starting materials,broad substrate scope,high efficiency and operational simplicity with water as the sole by-product.The strategy achieved an efficient and green molecular fragment assembly to access isoindolinones,which would provide opportunities for the synthesis of potential biologically active molecules in a green manner.展开更多
We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obt...We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.展开更多
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin...In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22301033)Jiangxi Provincial Natural Science Foundation(No.20232ACB213005 and 20212BAB213001)。
文摘The development of the three-component catalytic system for constructing isoindolinones from simple feedstocks is both significant and challenging.In this study,a unique tartrate-linked dimeric samarium-antimonotungstate[Sm_(2)(H_(2)O)_(6)(tar)(Sb_(2)W_(21)O_(72))]_(2)^(20-)(Sm_(4)tar_(2),H_(4)tar=tartaric acid)was synthesized via a one-step method at room temperature using an acetate buffer solution.The dimeric polyanion of Sm4tar2shows a centrosymmetric structure with a parallelogram-like arrangement and comprises two enantiomeric{Sm_(2)(H_(2)O)_(6)(Sb_(2)W_(21)O_(72))}moieties connected by two enantiomeric tar ligands.Sm_(4)tar_(2)demonstrates efficient catalytic activity in the three-component reaction involving 2-acylbenzoic acids,primary amines,and phosphine oxides to form 3,3-disubstituted isoindolinones.The advantages of this catalytic system include simple feedstocks,green and reusable catalyst,and operational simplicity with water as the sole by-product.This finding enables an effective molecular fragment assembly strategy for synthesizing isoindolinone drug precursor skeletons.
基金supported by NSFC under Grant No.12272403Beijing Training Program of Innovation under Grant No.S202410019024。
文摘Introducing PT-symmetric generalized Scarf-Ⅱpotentials into the three-coupled nonlinear Gross-Pitaevskii equations offers a new way to seek stable soliton states in quasi-onedimensional spin-1 Bose-Einstein condensates.In scenarios where the spin-independent parameter c_(0)and the spin-dependent parameter c_(2)vary,we use both analytical and numerical methods to investigate the three-coupled nonlinear Gross-Pitaevskii equations with PT-symmetric generalized Scarf-Ⅱpotentials.We obtain analytical soliton states and find that simply modulating c_(2)may change the analytical soliton states from unstable to stable.Additionally,we obtain numerically stable double-hump soliton states propagating in the form of periodic oscillations,exhibiting distinct behavior in energy exchange.For further investigation,we discuss the interaction of numerical double-hump solitons with Gaussian solitons and observe the transfer of energy among the three components.These findings may contribute to a deeper understanding of solitons in Bose-Einstein condensates with PT-symmetric potentials and may hold significance for both theoretical understanding and experimental design in related physics experiments.
基金supported by the Deutsche Forschungsgemeinschaft(DFG),TRR274(Project ID 408885537,Sy Nergy,EXC 2145/ID 390857198,to FMB)。
文摘The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.
基金supported by the National Natural Science Foundation of China (Grant No. 5186504)the University Science Foundation for Young Science and Technology Talents in Inner Mongolia Autonomous Region of China (Grant No. NJYT22078)+2 种基金the Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region (Grant No. JY20220059)the Inner Mongolia Autonomous Region ‘Grassland Talent’ project Young Innovative Talent Training Program Level ⅠBasic Research Expenses of Universities directly under the Inner Mongolia Autonomous Region (Grant No. ZTY2023040)。
文摘To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金funded by the American University of Sharjah.United Arab Emirates award number EN 9502-FRG19-M-E75。
文摘Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.
基金supported by the National Key R&D Program of China(Nos.2022YFB4101500 and 2022YFE0209500)the National Natural Science Foundation of China(Nos.22276191 and 21976177)the Qinghai Province Air Pollution Assessment and Fine Management Support Project,and the University of Chinese Academy of Science.
文摘As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.
基金supported by the program of Science and Technology International Cooperation Project of Qinghai Province (No. 2022-HZ-813)the Youth Innovation and Technology Project of High School in Shandong Province (No. 2019KJC021)+1 种基金the Natural Science Foundation of Shandong Province (No. ZR2021MB065)the National Natural Science Foundation of China (No. 31900298)。
文摘A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction could occur under photocatalyst-and additive-free conditions to afford a number of organic thiocyanates with moderate to good yield and favorable functional group tolerance.
文摘We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.
文摘Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.
基金supported by National Key Technology R&D Program of China(No.2011BAE06B01)
文摘A series of new hexahydroimidazo[1,2-a]pyridine derivatives were synthesized via convenient and practical three-component reactions. Preliminary bioassays showed that majority of the target compounds exhibited moderate to excellent insecticidal activity against cowpea aphids (Aphis craccivora). Among them, compound 91 demonstrated significant activity with LCso value of 0.00918 mmol/L which was about 3.8-fold higher than that of imidacloprid (IMI). Furthermore, the study of stereostructure-activity relationship of four isomers of 9k indicated that configuration played a key role in insecticidal activity of these compounds.
基金supported by Youth Innovation and Technology Project of Shandong Province(No.2019KJC021)the International Cooperation Project of Qinghai Province(No.2018-HZ-815)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2018MB009)the Qinghai key laboratory of Tibetan medicine research(No.2017-ZJ-Y11)CAS“Light of West China”Program 2018。
文摘A facile and metal-free visible-light-enabled three-component reaction of quinoxalin-2(1 H)-ones,alkenes and CF_(3)SO_(2)Na has been developed under air at room temperature.This photocatalytic tandem reaction using 4 CzIPN as the photocatalyst and air as the green oxidant,provides a mild and environmentally friendly approach to access a series of 3-trifluoroalkylated quinoxalin-2(1 H)-ones.
基金supported by the National Natural Science Foundation of China (Nos. 21172189, 21572196)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The functionalized spiro[indoline-3,40-pyrano[3,2-h]quinolines] were efficiently prepared in high yields from three-component reaction of 8-hydroxyquinoline, isatins and malononitrile or ethyl cyanoacetate in ethanol at room temperature for about 12 h in the presence of piperidine.
基金supported by National Natural Science Foundation of China(Nos.11303099,41531071 and 41574158)the Youth Innovation Promotion Association CAS
文摘The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles.
基金supported by the Opening Project of Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region (No. 2014YSHXZD01)
文摘A simple and metal-free method has been developed for the construction of quinoline-2,4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxylate, and a-ketoesters. The present protocol provides a convenient and attractive approach to various quinoline-2,4-carboxylates in moderate to good yields with excellent functional group tolerance.
文摘Potassium tert-butoxide has been found to be a highly efficient catalyst for one-pot,three-component reaction of aryl aldehydes, acetophenones,and thiols via Claisen-Schmidt/Michael addition reactions for the synthesis of thia-Michael adducts in high yields. The reactions are best carried out in tert-butyl alcohol at room temperature.
基金the National Natural Science Foundation of China(No.22001034)Jiangxi Provincial Natural Science Foundation(No.20212BAB213001).
文摘A H_(4)SiW_(12)O_(40)-catalyzed three-component tandem reaction of 2-acylbenzoic acids,primary amines and phosphine oxides to form 3,3-disubstituted isoindolinones was developed.By employing A H_(4)SiW_(12)O_(40)as the catalyst and dimethyl carbonate(DMC)as the solvent,a diverse range of 2-acylbenzoic acid derivatives and primary amines worked well to give the C3-phosphinoyl-functionalized 3,3-disubstituted isoindolinones with the yield range of 61%-87%.Advantages of this transformation include green catalyst and solvent,available starting materials,broad substrate scope,high efficiency and operational simplicity with water as the sole by-product.The strategy achieved an efficient and green molecular fragment assembly to access isoindolinones,which would provide opportunities for the synthesis of potential biologically active molecules in a green manner.
基金Project supported by the National Natural Science Foundation of China(Grant No.11771151)the Guangdong Natural Science Foundation of China(Grant No.2017A030313008)+1 种基金the Guangzhou Science and Technology Program of China(Grant No.201904010362)the Fundamental Research Funds for the Central Universities of China(Grant No.2019MS110)
文摘We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.
基金The project supported by the State Key Project of Fundamental Research of China under Grant No. G2000067101
文摘In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.