期刊文献+
共找到4,816篇文章
< 1 2 241 >
每页显示 20 50 100
IMPROVED QUANTITATIVE FEEDBACK THEORY TECHNIQUE AND APPLICATION TO THREE-AXIS HYDRAULIC SIMULATOR 被引量:1
1
作者 YU Jinying ZHAO Keding CAO Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期383-386,共4页
In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi... In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results. 展开更多
关键词 three-axis hydraulic simulator Quantitative feedback theory(QFT) Cascaded two-loop
在线阅读 下载PDF
Compound Control for Hydraulic Flight Motion Simulator 被引量:6
2
作者 王本永 董彦良 赵克定 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第2期240-245,共6页
The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among chan... The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance. 展开更多
关键词 hydraulic flight motion simulator system identification compound control /~ synthesis feedforward compensation
原文传递
Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform 被引量:22
3
作者 吴东苏 顾宏斌 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期425-433,共9页
There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two gr... There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system. 展开更多
关键词 motion platform nonlinear adaptive control sliding control flight simulator Stewart platform
在线阅读 下载PDF
Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach 被引量:12
4
作者 Yao Jianyong Jiao Zongxia Han Songshan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期814-822,共9页
Low-velocity tracking capability is a key performance of flight motion simulator (FMS), which is mainly affected by the nonlinear friction force. Though many compensation schemes with ad hoc friction models have bee... Low-velocity tracking capability is a key performance of flight motion simulator (FMS), which is mainly affected by the nonlinear friction force. Though many compensation schemes with ad hoc friction models have been proposed, this paper deals with low-velocity control without friction model, since it is easy to be implemented in practice. Firstly, a nonlinear model of the FMS middle frame, which is driven by a hydraulic rotary actuator, is built. Noting that in the low velocity region, the unmodeled friction force is mainly characterized by a changing-slowly part, thus a simple adaptive law can be employed to learn this changing-slowly part and compensate it. To guarantee the boundedness of adaptation process, a discontinuous projection is utilized and then a robust scheme is proposed. The controller achieves a prescribed output tracking transient performance and final tracking accuracy in general while obtaining asymptotic output tracking in the absence of modeling errors. In addition, a saturated projection adaptive scheme is proposed to improve the globally learning capability when the velocity becomes large, which might make the previous proposed projection-based adaptive law be unstable. Theoretical and extensive experimental results are obtained to verify the high-performance nature of the proposed adaptive robust control strategy. 展开更多
关键词 Adaptive control BACKSTEPPING Flight motion simulator Friction compensation Hydraulic actuator Robust control
原文传递
Dynamic Analysis of High-Speed Boat Motion Simulator by a Novel 3-DoF Parallel Mechanism with Prismatic Actuators Based on Seakeeping Trial 被引量:3
5
作者 Ali Pirouzfar Javad Enferadi Masoud Dehghan 《Journal of Marine Science and Application》 CSCD 2018年第2期178-191,共14页
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor... In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored. 展开更多
关键词 motion simulators Parallel mechanism HIGH-SPEED BOAT SEAKEEPING TRIAL INVERSE dynamics Virtualwork
在线阅读 下载PDF
Marine Predator Algorithm-based Sliding Mode Control of a Novel Motion Simulator for High Column Sloshing Experiments 被引量:1
6
作者 DU Zun-feng CHEN Xiang-yu +2 位作者 BAI Hao ZHU Hai-ming HAN Mu-xuan 《船舶力学》 EI CSCD 北大核心 2024年第12期1835-1848,共14页
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi... Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability. 展开更多
关键词 regeneration column sloshing experiment motion simulator Stewart platform sliding mode control marine predator algorithm
在线阅读 下载PDF
Numerical simulation analysis of particle motion behavior and key structures inside a novel cyclone separator
7
作者 Jie Kou Hang Qiu Chenyang Wang 《Chinese Journal of Chemical Engineering》 2025年第9期114-127,共14页
This study proposes a novel cyclone separator with a conical inner core to enhance particle classification efficiency in oil and gas wellhead-recovered liquids.Particle motion and force dynamics are analyzed to optimi... This study proposes a novel cyclone separator with a conical inner core to enhance particle classification efficiency in oil and gas wellhead-recovered liquids.Particle motion and force dynamics are analyzed to optimize key structural parameters,including inlet diameter(D_i),overflow pipe diameter(D_(e)),insertion depth(L_(e)),and bottom flow pipe diameter(D_(z)).Numerical simulations employ the Reynolds stress turbulence model,SIMPLEC algorithm,and discrete phase model to evaluate separation performance in a gas-liquid two-phase system.Results indicate that a smaller D_i improves fine particle separation but increases turbulence;an optimal range of D_i/D_(c)=0.35-0.4 is recommended.Larger D_(e) enhances the diversion ratio,aiding fine particle discharge(D_(e)/D_(c)=0.25-0.35).Increased Le facilitates fine particle overflow but induces vortices,whereas a smaller L_(e) stabilizes the bottom flow for larger particle separation(L_(e)/D_(c)=0.5-0.75).A reduced D_(z) enhances centrifugal force and separation efficiency but may cause turbulence;an optimal D_(z)/D_(c) of 0.6-0.65 is suggested for stability.These findings provide valuable design guidelines for improving cyclone separator performance in multiphase flow applications. 展开更多
关键词 Particle motion Gas-liquid-solid separation Hydro cyclone Integrated separation Numerical simulation
在线阅读 下载PDF
Effect of Nacelle Motions on Rotor Performance and Drivetrain Dynamics in Floating Offshore Wind Turbines Using Fully Coupled Simulations
8
作者 Shuangyi Xie Yongran Li +2 位作者 Jiao He Yingzhe Kan Yuxin Li 《哈尔滨工程大学学报(英文版)》 2025年第6期1150-1163,共14页
This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using ... This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using the National Renewable Energy Laboratory 5 MW monopile-supported offshore wind turbine and the OC4 DeepCwind semisubmersible wind turbine as case studies,the research addresses the complex dynamic responses resulting from the interaction among wind,waves,and turbine structures.Detailed multi-body dynamics models of wind turbines,including drivetrain components,are created within the SIMPACK framework.Meanwhile,the mooring system is modeled using a lumped-mass method.Various operational conditions are simulated through five wind-wave load cases.Results demonstrate that nacelle motions significantly influence rotor speed,thrust,torque,and power output,as well as the dynamic loads on drivetrain components.These findings highlight the need for advanced simulation techniques for the design and optimization of FOWTs to ensure reliable performance and longevity. 展开更多
关键词 Drivetrain Coupled simulation Monopile wind turbine Semisubmersible platform Nacelle motion
在线阅读 下载PDF
Ground Motion Simulation Via Generative Adversarial Network
9
作者 Kai Chen Hua Pan +1 位作者 Meng Zhang Zhi-Heng Li 《Applied Geophysics》 2025年第3期684-697,893,894,共16页
This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,... This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,particularly suited for regions with limited seismic data.Herein,we report a generative adversarial network(GAN)framework capable of simulating strong ground motions under various environmental conditions using only a small set of real earthquake records.The constructed GAN model generates ground motions based on continuous physical variables such as source distance,site conditions,and magnitude,effectively capturing the complexity and diversity of ground motions under different scenarios.This capability allows the proposed model to approximate real seismic data,making it applicable to a wide range of engineering purposes.Using the Shandong Pingyuan earthquake as an example,a specialized dataset was constructed based on regional real ground motion records.The response spectrum at target locations was obtained through inverse distance-weighted interpolation of actual response spectra,followed by continuous wavelet transform to derive the ground motion time histories at these locations.Through iterative parameter adjustments,the constructed GAN model learned the probability distribution of strong-motion data for this event.The trained model generated three-component ground-motion time histories with clear P-wave and S-wave characteristics,accurately reflecting the non-stationary nature of seismic records.Statistical comparisons between synthetic and real response spectra,waveform envelopes,and peak ground acceleration show a high degree of similarity,underscoring the effectiveness of the model in replicating both the statistical and physical characteristics of real ground motions.These findings validate the feasibility of GANs for generating realistic earthquake data in data-scarce regions,providing a reliable approach for enriching regional ground motion databases.Additionally,the results suggest that GAN-based networks are a powerful tool for building predictive models in seismic hazard analysis. 展开更多
关键词 Ground motion simulation Machine learning Generative adversarial networks Wavelet transform
在线阅读 下载PDF
Integrated source-site effects on seismic intensity in the 2025 Myanmar earthquake from the three-component ground motion simulations by stochastic finite-fault method
10
作者 Wang Hongwei Wen Ruizhi +3 位作者 Peng Zhong Ren Yefei Qiang Shengyin Liu Ye 《Earthquake Engineering and Engineering Vibration》 2025年第4期901-915,共15页
The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improv... The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns. 展开更多
关键词 2025 Myanmar earthquake stochastic finite-fault method ground motion simulation seismic intensity source-site effects
在线阅读 下载PDF
NeTrainSim:a network-level simulator for modeling freight train longitudinal motion and energy consumption
11
作者 Ahmed S.Aredah Karim Fadhloun Hesham A.Rakha 《Railway Engineering Science》 EI 2024年第4期480-498,共19页
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ... Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption. 展开更多
关键词 Ne Train Sim Network train simulation Train longitudinal motion Energy consumption Carbon footprint
在线阅读 下载PDF
Motion simulation and experiment of a novel modular self-reconfigurable robot
12
作者 吴秋轩 曹广益 费燕琼 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期185-190,共6页
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo... Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible. 展开更多
关键词 modular self-reconfigurable robot structure design motion simulation distributed control
在线阅读 下载PDF
Multi-body Motion Modeling and Simulation for Tilt Rotor Aircraft 被引量:8
13
作者 李海旭 屈香菊 王维军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期415-422,共8页
The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimpl... The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft. 展开更多
关键词 tilt rotor aircraft multi-body dynamics motion modeling flight dynamics simulATION
原文传递
Physics-based Modeling and Simulation for Motional Cable Harness Design 被引量:8
14
作者 LIU Jianhua ZHAO Tao +1 位作者 NING Ruxin LIU Jiashun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期1075-1082,共8页
The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable... The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work. 展开更多
关键词 motional cable harness physics-based modeling motion simulation Kirchhoff rod
在线阅读 下载PDF
Dominant pulse simulation of near fault ground motions 被引量:12
15
作者 S.R. Hoseini Vaez M.K. Sharbatdar +2 位作者 G. Ghodrati Amiri H. Naderpour A. Kheyroddin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期267-278,共12页
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve... In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility. 展开更多
关键词 dominant pulse near fault ground motions forward directivity response spectra simulATION
在线阅读 下载PDF
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:8
16
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
在线阅读 下载PDF
Numerical Simulation on Oscillation-Sliding-Uplift Rock Coupled Motion of Caisson Breakwater Under Wave Excitation 被引量:6
17
作者 王元战 龚薇 迟丽华 《China Ocean Engineering》 SCIE EI 2010年第2期207-218,共12页
Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation cou... Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters. 展开更多
关键词 caisson breakwater four motion modes joint motion process numerical simulation
在线阅读 下载PDF
Modeling and Motion Simulation for A Flying-Wing Underwater Glider with A Symmetrical Airfoil 被引量:4
18
作者 ZHAO Liang WANG Peng +1 位作者 SUN Chun-ya SONG Bao-wei 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期322-332,共11页
The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the f... The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the flying-wing UG are different from those of "legacy gliders" which have revolving bodies, and these two factors strongly affect the dynamic performance of the vehicle. Considering these differences, we propose a new configuration of the internal actuators for the flying-wing UG and treat the flying-wing UG as a multi-body system when establishing its dynamic model. In this paper, a detailed dynamic model is presented using the Newton-Euler method for the flying-wing UG. Based on the full dynamic model, the effect of the internal actuators on the steady gliding motion of vehicle is studied theoretically, and the relationship between the state parameters of the steady gliding motion and the controlled variables is obtained by solving a set of equilibrium equations. Finally, the behaviors of two classical motion modes of the glider are analyzed based on the simulation. The simulation results demonstrate that the motion performance of the proposed flying-wing UG is satisfactory. 展开更多
关键词 flying-wing underwater GLIDER blended-wing-body dynamic MODELING motion simulation STEADY motion
在线阅读 下载PDF
Simulation of spatially correlated earthquake ground motions for engineering purposes 被引量:7
19
作者 Wu Yongxin Gao Yufeng Li Dayong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期163-173,共11页
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ... A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads. 展开更多
关键词 ground motions simulation root operation incoherency effect wave-passage effect site-response effect
在线阅读 下载PDF
MATLAB-Based Simulation of Buoyancy-Driven Underwater Glider Motion 被引量:11
20
作者 KAN Lei ZHANG Yuwen FAN Hui YANG Wugang CHEN Zhikun 《Journal of Ocean University of China》 SCIE CAS 2008年第1期113-118,共6页
The mass configuration of the buoyancy-driven underwater glider is decomposed and defined. The coupling between the glider body and its internal masses is addressed using the energy law. A glider motion model is estab... The mass configuration of the buoyancy-driven underwater glider is decomposed and defined. The coupling between the glider body and its internal masses is addressed using the energy law. A glider motion model is established, and the corresponding simulation program is derived using MATLAB. The characteristics of the glider motion are explored using this program. The simula- tion results show that the basic characteristic of a buoyancy-driven underwater glider is the periodic alternation of downward and upward motions. The glider's spiral motion can be applied to missions in restricted regions. The glider's horizontal velocity, gliding depth and its motion radius in spiral motion can be changed to meet different application purposes by using different glider parameter designs. The simulation also shows that the model is appropriate and the program has strong simulation functions. 展开更多
关键词 buoyancy-driven simulation model spiral motion MATLAB
在线阅读 下载PDF
上一页 1 2 241 下一页 到第
使用帮助 返回顶部