[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau...[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.展开更多
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive ...Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.展开更多
Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction ...Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction kinetics and structural instability.This study overcomes these challenges by implementing a rapid,energy-efficient approach to develop a MOF-modulated MnP@Cu_(3)P heterostructure via a hydrothermal process followed by high-temperature phosphorization.The heterostructure demonstrates superior redox activity with enhanced stability and improved charge kinetics achieving a high specific capacity of 1131 C g^(-1)as supported by density functional theory findings of increased DOS near the Fermi level.The flexible supercapacitor achieves a peak energy density of 99.20 Wh kg^(-1)and power density of 15.40 kW kg^(-1).Simultaneously,it shows exceptional hydrogen evolution reaction performance with an overpotential of η_(10)=44 mV and η_(1000)=225 mV,attributed to electron transfer from Cu to Mn via P bridging,which shifts the active centers from Mn and Cu sites to the P site,confirmed by lowestΔG_(H)^(*)value of-0.16 eV.The overall water-splitting in full-cell electrocatalyzer delivers cell voltage of E_(20)=1.48 V and E_(1000)=1.88 V and setting a new standard in solar-to-hydrogen efficiency of 20.02%.The electrolyzer cell maintained prolonged stability at industrial-scale current densities of 1.0 A cm^(-2)under alkaline electrolysis achieving an estimated hydrogen production cost of INR 146.7 or US$1.67per kilogram aligning with the cost target of $2/kg by 2026 established by the Clean Hydrogen Electrolysis Program,U.S.department of energy.Furthermore,real-phase demonstration highlights the uninterrupted hydrogen production till 6-minutes via connecting this electrocatalyzer with photovoltaic-charged supercapacitors effectively addressing solar intermittency and gas fluctuations challenges in water-electrolysis.展开更多
In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused b...In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused by the random telegraph noise,cell-to-cell interference and data retention noise are jointly considered.Based on the superposition modulation,we build a non-orthogonal multiuser communication model where a linear mapping is conducted between the verify voltages and binary antipodal symbols.Aimed at improving the storage efficiency,we propose an unequal amplitude mapping(UAM)solution by optimizing the weighting coefficients of verify voltages to intelligently adjust the width of each state.Moreover,the uniform storage efficiency region and sum storage efficiency of different labelings with various decoding schemes are discussed.Simulation results validate the effectiveness of our proposed UAM solution where an up to 20.9%storage efficiency gain can be achieved compared to the current used benchmark scheme.In addition,analytical and simulation results also demonstrate that the successive cancellation decoding outperforms other decoding schemes for all labelings.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
The 4-level pulse amplitude modulation(PAM4)based on an 23 GHz ultrabroadband directly modulated laser(DML)was proposed.We have experimentally demonstrated that based on intensity modulation and direct detection(IMDD)...The 4-level pulse amplitude modulation(PAM4)based on an 23 GHz ultrabroadband directly modulated laser(DML)was proposed.We have experimentally demonstrated that based on intensity modulation and direct detection(IMDD)56 Gbps per wavelength PAM4 signals transferred over 35 km standard single mode fiber(SSMF)without any optical amplification and we have achieved the bit error rate(BER)of the PAM4 transmission was under 2.9×10–4 by using feed forward equalization(FFE).展开更多
This paper demonstrates the intensity modulation characters of orthogonally polarized HeNe lasers with different optical feedback level generated by the variable reflectivity of external reflector. The modulation dept...This paper demonstrates the intensity modulation characters of orthogonally polarized HeNe lasers with different optical feedback level generated by the variable reflectivity of external reflector. The modulation depths of the orthogonally polarized frequencies are increased when the optical feedback level becomes strong. It also observes that the modulation amplitudes are different for different external cavity length. Based on the vectorial extension of Lamb's semi-classical theory, it finds that the calculations are consistent with the experimental results.展开更多
The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) re...The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars ha...Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars have been working on.V arious capacitance voltage balancing strategies have been studied,in which the redundant short vectors are not fully utilized.In order to increase the capacitance voltage control effect of the short vectors,a new algorithm is proposed.展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the ...Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.展开更多
基金National Natural Science Foundation of China(12405168)The Fundamental Research Funds for the Central Universities,China(2024CDJXY004)。
文摘[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB2904500in part by the National Natural Science Foundation of China under Grant 62471183in part by the Fundamental Research Funds for the Central Universities under Grant 2024ZYGXZR076.
文摘Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.
基金supported financially by the Ministry of Textiles(Grant No-2/3/2021-NTTM(Pt.)),Govt.of India。
文摘Engineering a phosphide-based multifunctional heterostructure with high redox activity,stability,and efficient charge kinetics for both supercapacitors and water splitting remains challenging due to sluggish reaction kinetics and structural instability.This study overcomes these challenges by implementing a rapid,energy-efficient approach to develop a MOF-modulated MnP@Cu_(3)P heterostructure via a hydrothermal process followed by high-temperature phosphorization.The heterostructure demonstrates superior redox activity with enhanced stability and improved charge kinetics achieving a high specific capacity of 1131 C g^(-1)as supported by density functional theory findings of increased DOS near the Fermi level.The flexible supercapacitor achieves a peak energy density of 99.20 Wh kg^(-1)and power density of 15.40 kW kg^(-1).Simultaneously,it shows exceptional hydrogen evolution reaction performance with an overpotential of η_(10)=44 mV and η_(1000)=225 mV,attributed to electron transfer from Cu to Mn via P bridging,which shifts the active centers from Mn and Cu sites to the P site,confirmed by lowestΔG_(H)^(*)value of-0.16 eV.The overall water-splitting in full-cell electrocatalyzer delivers cell voltage of E_(20)=1.48 V and E_(1000)=1.88 V and setting a new standard in solar-to-hydrogen efficiency of 20.02%.The electrolyzer cell maintained prolonged stability at industrial-scale current densities of 1.0 A cm^(-2)under alkaline electrolysis achieving an estimated hydrogen production cost of INR 146.7 or US$1.67per kilogram aligning with the cost target of $2/kg by 2026 established by the Clean Hydrogen Electrolysis Program,U.S.department of energy.Furthermore,real-phase demonstration highlights the uninterrupted hydrogen production till 6-minutes via connecting this electrocatalyzer with photovoltaic-charged supercapacitors effectively addressing solar intermittency and gas fluctuations challenges in water-electrolysis.
基金supported by Key Project of Sichuan Provincial Natural Science Foundation(No.2022NSFSC0043).
文摘In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused by the random telegraph noise,cell-to-cell interference and data retention noise are jointly considered.Based on the superposition modulation,we build a non-orthogonal multiuser communication model where a linear mapping is conducted between the verify voltages and binary antipodal symbols.Aimed at improving the storage efficiency,we propose an unequal amplitude mapping(UAM)solution by optimizing the weighting coefficients of verify voltages to intelligently adjust the width of each state.Moreover,the uniform storage efficiency region and sum storage efficiency of different labelings with various decoding schemes are discussed.Simulation results validate the effectiveness of our proposed UAM solution where an up to 20.9%storage efficiency gain can be achieved compared to the current used benchmark scheme.In addition,analytical and simulation results also demonstrate that the successive cancellation decoding outperforms other decoding schemes for all labelings.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported by National Key Research and Development Program of China (No. 2018YFB2201101)the National Natural Science Foundation of China (Nos. 61635001 and 61575186)
文摘The 4-level pulse amplitude modulation(PAM4)based on an 23 GHz ultrabroadband directly modulated laser(DML)was proposed.We have experimentally demonstrated that based on intensity modulation and direct detection(IMDD)56 Gbps per wavelength PAM4 signals transferred over 35 km standard single mode fiber(SSMF)without any optical amplification and we have achieved the bit error rate(BER)of the PAM4 transmission was under 2.9×10–4 by using feed forward equalization(FFE).
基金Project supported by the State Key Program of National Natural Science of China (Grant No 60438010)
文摘This paper demonstrates the intensity modulation characters of orthogonally polarized HeNe lasers with different optical feedback level generated by the variable reflectivity of external reflector. The modulation depths of the orthogonally polarized frequencies are increased when the optical feedback level becomes strong. It also observes that the modulation amplitudes are different for different external cavity length. Based on the vectorial extension of Lamb's semi-classical theory, it finds that the calculations are consistent with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60977005)
文摘The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
文摘Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars have been working on.V arious capacitance voltage balancing strategies have been studied,in which the redundant short vectors are not fully utilized.In order to increase the capacitance voltage control effect of the short vectors,a new algorithm is proposed.
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金supported by“National Natural Science Foundation of China(U21A20171,U20A20245)”“Hubei Provincial Natural Science Foundation of China(2023AFA010)”+1 种基金“Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-09)”“Social Public Welfare and Basic Research Special Project of Zhongshan(2020B2015).”。
文摘Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.