期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
控制网络ControlNet的参数优化 被引量:5
1
作者 刘云静 闫冬梅 《工业控制计算机》 2005年第5期34-35,共2页
以罗克韦尔三层网络中的控制网为设计对象,对网络的一些主要参数作了介绍,通过具体的实验,分析了影响网络带宽利用率的因素,并提出了一些如何改善网络性能的见解。
关键词 controlnet 参数优化 控制网络 带宽利用率 设计对象 三层网络 罗克韦尔 网络性能
在线阅读 下载PDF
ControlNet控制系统网络设计优化 被引量:1
2
作者 党洪涛 《自动化技术与应用》 2015年第10期52-56,共5页
通过分析Control Net网络原理并结合具体的生产工艺流程,设计了基于Control Net网络的控制系统;同时,针对网络设计存在的问题提出了Control Net网络优化方案并在实际生产中具体实施。应用结果表明,网络划分和网络关键参数设置是非常行... 通过分析Control Net网络原理并结合具体的生产工艺流程,设计了基于Control Net网络的控制系统;同时,针对网络设计存在的问题提出了Control Net网络优化方案并在实际生产中具体实施。应用结果表明,网络划分和网络关键参数设置是非常行之有效的优化方案,成功地解决了生产中出现的Control Net网络故障,各项指标满足了控制要求,同时对Control Net控制系统网络的设计和优化有一定的参考价值。 展开更多
关键词 输煤程控系统 controlnet 网络优化 网络参数 NUT
在线阅读 下载PDF
CONTROLNET网络在梅钢高炉改造中的应用
3
作者 杨丽荣 《梅山科技》 2006年第2期18-21,共4页
介绍了梅山2号高炉第二代扩客改造大修中,CONTROLNET网络在应用中如何实现优化系统配置,提高系统的响应速度,及针对谊网络在工程应用中须注意的问题进行了总结。
关键词 controlnet 网络 高炉改造 优化配置
在线阅读 下载PDF
Finding optimal Bayesian networks by a layered learning method 被引量:4
4
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 BAYESIAN network (BN) structure LEARNING layeredoptimal LEARNING (LOL)
在线阅读 下载PDF
Computational Optimization of RIS-Enhanced Backscatter and Direct Communication for 6G IoT:A DDPG-Based Approach with Physical Layer Security
5
作者 Syed Zain Ul Abideen Mian Muhammad Kamal +4 位作者 Eaman Alharbi Ashfaq Ahmad Malik Wadee Alhalabi Muhammad Shahid Anwar Liaqat Ali 《Computer Modeling in Engineering & Sciences》 2025年第3期2191-2210,共20页
The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyeffic... The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyefficient communication.This study explores the integration of Reconfigurable Intelligent Surfaces(RIS)into IoT networks to enhance communication performance.Unlike traditional passive reflector-based approaches,RIS is leveraged as an active optimization tool to improve both backscatter and direct communication modes,addressing critical IoT challenges such as energy efficiency,limited communication range,and double-fading effects in backscatter communication.We propose a novel computational framework that combines RIS functionality with Physical Layer Security(PLS)mechanisms,optimized through the algorithm known as Deep Deterministic Policy Gradient(DDPG).This framework adaptively adapts RIS configurations and transmitter beamforming to reduce key challenges,including imperfect channel state information(CSI)and hardware limitations like quantized RIS phase shifts.By optimizing both RIS settings and beamforming in real-time,our approach outperforms traditional methods by significantly increasing secrecy rates,improving spectral efficiency,and enhancing energy efficiency.Notably,this framework adapts more effectively to the dynamic nature of wireless channels compared to conventional optimization techniques,providing scalable solutions for large-scale RIS deployments.Our results demonstrate substantial improvements in communication performance setting a new benchmark for secure,efficient and scalable 6G communication.This work offers valuable insights for the future of IoT networks,with a focus on computational optimization,high spectral efficiency and energy-aware operations. 展开更多
关键词 Computational optimization reconfigurable intelligent surfaces(RIS) 6G networks IoT and DDPG physical layer security(PLS) backscatter communication
在线阅读 下载PDF
Security-Reliability Analysis and Optimization for Cognitive Two-Way Relay Network with Energy Harvesting
6
作者 Luo Yi Zhou Lihua +3 位作者 Dong Jian Sun Yang Xu Jiahui Xi Kaixin 《China Communications》 SCIE CSCD 2024年第11期163-179,共17页
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node... This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm. 展开更多
关键词 artificial noise energy harvesting cognitive two-way relay network hardware impairments physical layer security security-reliability tradeoff self-adaptive quantum particle swarm optimization
在线阅读 下载PDF
Research on handover algorithm to reduce the blocking probability in LEO satellite network 被引量:1
7
作者 Chen Bingcai Zhang Naitong +1 位作者 Nie Boxun Zhou Tingxian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期30-36,共7页
Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when... Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optimal layer selection is proposed. The scheme sufficiently takes into account the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic loed in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicality, as compared to the single LEO layer network. 展开更多
关键词 satellite handover double-tier satellite network LEO MEO GH algorithm multi-tier optimal layer selection.
在线阅读 下载PDF
ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting 被引量:6
8
作者 M. Madhiarasan S. N. Deepa 《Circuits and Systems》 2016年第10期2975-2995,共21页
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ... The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust. 展开更多
关键词 ELMAN Neural network Modified Grey Wolf Optimizer Hidden layer Neuron Units Forecasting Wind Speed
在线阅读 下载PDF
Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Populationphysic-based Algorithm 被引量:4
9
作者 Sajjad Afrakhteh Mohammad-Reza Mosavi +1 位作者 Mohammad Khishe Ahmad Ayatollahi 《International Journal of Automation and computing》 EI CSCD 2020年第1期108-122,共15页
A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their... A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their spatial distributions.Multi-layer perceptron neural networks(MLP-NNs)are commonly used for classification.Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently.Conventional methods for training NNs,such as gradient descent and recursive methods,have some disadvantages including low accuracy,slow convergence speed and trapping in local minimums.In this paper,in order to overcome these issues,the MLP-NN trained by a hybrid population-physics-based algorithm,the combination of particle swarm optimization and gravitational search algorithm(PSOGSA),is proposed for our classification problem.To show the advantages of using PSOGSA that trains NNs,this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization(PSO),gravitational search algorithm(GSA)and new versions of PSO.The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics.The results show that the proposed algorithm in most subjects of encephalography(EEG)dataset has very better or acceptable performance compared to others. 展开更多
关键词 Brain-computer interface(BCI) CLASSIFICATION electroencephalography(EEG) gravitational search algorithm(GSA) multi-layer perceptron neural network(MLP-NN) particle swarm optimization
原文传递
Security: A Core Issue in Mobile <i>Ad hoc</i>Networks
10
作者 Asif Shabbir Fayyaz Khalid +2 位作者 Syed Muqsit Shaheed Jalil Abbas M. Zia-Ul-Haq 《Journal of Computer and Communications》 2015年第12期41-66,共26页
Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless l... Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless links for communication. Wireless networks are considered more exposed to security attacks as compared to wired networks, especially;MANETs are the soft target due to vulnerable in nature. Lack of infrastructure, open peer to peer connectivity, shared wireless medium, dynamic topology and scalability are the key characteristics of MANETs which make them ideal for security attacks. In this paper, we shall discuss in detail, what does security mean, why MANETs are more susceptible to security attacks than wired networks, taxonomy of network attacks and layer wise analysis of network attacks. Finally, we shall propose solutions to meet the security challenges, according to our framed security criteria. 展开更多
关键词 MOBILE Devices Optimal Choice MAnet SECURITY WIRELESS network Taxonomy Intrusion Detection network SECURITY Threats layer Wise network Vulnerabilities of WIRELESS SECURITY Criteria
在线阅读 下载PDF
基于TabNet-LN-LSTM协同预测与粒子群优化的双有源桥变换器电流应力优化方法
11
作者 蔡久青 雷伟昊 +1 位作者 张欣 倪康 《电气工程学报》 北大核心 2025年第5期35-44,共10页
双有源桥变换器因其优异的功率密度和双向功率传输能力,在众多工业应用中得到广泛关注。随着电力电子设备对能效和可靠性要求的不断提高,双有源桥变换器的电流应力已成为衡量其性能的关键指标之一。过大的电流应力不仅会导致功率器件损... 双有源桥变换器因其优异的功率密度和双向功率传输能力,在众多工业应用中得到广泛关注。随着电力电子设备对能效和可靠性要求的不断提高,双有源桥变换器的电流应力已成为衡量其性能的关键指标之一。过大的电流应力不仅会导致功率器件损耗增加,系统效率下降,还会影响变换器的可靠性和使用寿命。针对上述问题,提出了一种基于TabNet-LN-LSTM协同预测与粒子群优化的电流应力优化方法。该方法通过利用TabNet和层归一化长短期记忆神经网络(Long-short term memory neural network with layer normalization,LN-LSTM)协同构建电感电流时序预测模型,并结合粒子群优化算法对双有源桥变换器在不同运行工况下的电流应力进行优化。通过算法试验和硬件试验证明,所提方法不仅能够精确预测电感电流波形,其预测波形与硬件实测波形相比,其平均绝对误差仅为0.3525,决定系数高达97.17%;同时,能够有效降低双有源桥变换器的电流应力,进一步提升系统的整体效能和可靠性。 展开更多
关键词 双有源桥变换器 电流应力优化 Tabnet 层归一化长短期记忆神经网络 时序波形预测 粒子群算法
在线阅读 下载PDF
基于跨层链路质量感知的OLSR协议优化研究
12
作者 李翊嘉 刘玉涛 +2 位作者 刘倩楠 刘宪磊 李佳峰 《计算机测量与控制》 2026年第1期166-172,180,共8页
针对传统OLSR协议多点中继选择机制仅依赖拓扑覆盖而忽略链路动态质量的问题,提出了一种基于跨层设计的OLSR改进方案,对MPR选择机制进行优化;构建跨层综合状态因子,融合物理层误比特率、MAC层帧接收成功率、MAC层队列长度等多维指标,设... 针对传统OLSR协议多点中继选择机制仅依赖拓扑覆盖而忽略链路动态质量的问题,提出了一种基于跨层设计的OLSR改进方案,对MPR选择机制进行优化;构建跨层综合状态因子,融合物理层误比特率、MAC层帧接收成功率、MAC层队列长度等多维指标,设计拓展HELLO消息格式,新增CSE跨层字段,实现邻居节点状态的实时交互;设计新的MPR选择机制,将传统覆盖度优先策略优化为基于CSE加权的多目标决策模型,通过动态评分函数同时优化链路稳定性和负载均衡;仿真结果表明:CSE-OLSR在分组投递率、平均端到端时延等方面均优于传统OLSR,能够有效提高数据传输的稳定性和可靠性,适用于高动态、高负载的MANETs场景。 展开更多
关键词 移动自组网 OLSR协议 跨层设计 链路质量感知 路由优化
在线阅读 下载PDF
Collaborative Fault Recovery and Network Reconstruction Method for Cyber-physical-systems Based on Double Layer Optimization 被引量:11
13
作者 Wanxing Sheng Keyan Liu +1 位作者 Zhao Li Xueshun Ye 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期380-392,共13页
For fault characteristics of cyber-physical-systems(CPS)based distribution network,a spatiotemporal incidence matrix to represent correlation of concurrent faults on cyberspace and physical space is proposed,and strat... For fault characteristics of cyber-physical-systems(CPS)based distribution network,a spatiotemporal incidence matrix to represent correlation of concurrent faults on cyberspace and physical space is proposed,and strategies of fault location,removal,and recovery of concurrent faults are analyzed in this paper.Considering the multiple objectives of minimum network loss,voltage deviation,and switching operation times,a collaborative power supply restoration model of a CPS-based distribution network with the strategy that restoration of the communication layer is prior to the physical layer is constructed using the Dijkstra’s dynamic routing algorithm and second-order cone relaxation distribution network reconfiguration method,to realize orderly recovery of a distribution network during CPS concurrent faults.Related investigations are made based on the DCPS-160 case,and the accuracy and effectiveness of the proposed model are also verified. 展开更多
关键词 Collaborative fault cyber-physical-systems distribution network double layer optimization
原文传递
基于贝叶斯优化与CBAM-ResNet的乏燃料剪切机故障诊断方法 被引量:5
14
作者 陈甲华 王平平 《科学技术与工程》 北大核心 2023年第28期12101-12107,共7页
乏燃料剪切机是动力堆乏燃料后处理首端的重要设备,状态监测与故障诊断对于保证乏燃料剪切机的安全运行、避免重大事故、减少其维修时间和费用有着重要的作用。针对目前中国针对乏燃料剪切机的故障诊断研究少、数据获取难度大、故障诊... 乏燃料剪切机是动力堆乏燃料后处理首端的重要设备,状态监测与故障诊断对于保证乏燃料剪切机的安全运行、避免重大事故、减少其维修时间和费用有着重要的作用。针对目前中国针对乏燃料剪切机的故障诊断研究少、数据获取难度大、故障诊断的准确率低等问题,构建基于贝叶斯优化与卷积块注意力模块(convolutional block attention module,CBAM)的残差神经网络模型。首先在利用双声道差分法对噪声降噪,将其转化为梅尔频谱图并进行数据增强;其次引入CBAM对残差网络进行改进,提高网络的深层次特征提取能力,并利用贝叶斯优化算法训练优化器等超参数,得到最优超参数后重新训练网络模型。最后,通过实验结果显示所构建模型的诊断准确率为93.67%,对比其他方法有显著的提高。 展开更多
关键词 残差网络 卷积块注意力模块(CBAM) 贝叶斯优化 卷积层 乏燃料剪切机 故障诊断
在线阅读 下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
15
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 Extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
在线阅读 下载PDF
Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features
16
作者 S.Prasanna Bharathi S.Srinivasan +1 位作者 G.Chamundeeswari B.Ramesh 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期579-594,共16页
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ... Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively. 展开更多
关键词 HDIB bat optimization algorithm recurrent deep learning neural network convolutional neural network single layer perceptron hyperspectral images deep metric learning
在线阅读 下载PDF
基于动态区域划分的配电网台区三相不平衡治理策略
17
作者 陈晓龙 徐颖 李斌 《电力自动化设备》 北大核心 2025年第8期208-216,共9页
传统三相不平衡治理仅关注变压器关口处的三相不平衡情况,忽略了台区内部不平衡特征,且多采用静态调相策略,难以适应灵活源荷接入下低压配电网运行状态的动态变化。为此,提出了一种基于动态区域划分的三相不平衡治理策略。提出基于分区... 传统三相不平衡治理仅关注变压器关口处的三相不平衡情况,忽略了台区内部不平衡特征,且多采用静态调相策略,难以适应灵活源荷接入下低压配电网运行状态的动态变化。为此,提出了一种基于动态区域划分的三相不平衡治理策略。提出基于分区评价指数与阈值触发机制的动态分区方法,以划定后续相序优化的区域范围。建立考虑多类型灵活调节资源的双层优化模型,上层以各分区三相不平衡度最小为目标优化相序配置,下层构建以运行成本最小为目标的电压优化模型。采用基于云模型改进的遗传算法和Gurobi求解器分别求解上下层模型。基于改进的IEEE 123节点系统和0.38 kV实际配电网台区进行仿真,验证了所提策略的有效性与优越性。 展开更多
关键词 配电网 三相不平衡 动态分区 双层优化模型 相序优化 云模型 遗传算法
在线阅读 下载PDF
同质竞争下补贴策略对多机场航线网络演化博弈
18
作者 吴维 林芷伊 王兴隆 《北京航空航天大学学报》 北大核心 2025年第10期3392-3404,共13页
为实现区域内多机场基于差异化定位的高质量协同发展,研究机场差异化补贴策略对多机场航线网络演化影响,进而确定最佳补贴策略。基于旅客、航司、机场间的竞争博弈关系,构建了双层演化博弈模型。在上层博弈模型中,考虑旅客自学能力对票... 为实现区域内多机场基于差异化定位的高质量协同发展,研究机场差异化补贴策略对多机场航线网络演化影响,进而确定最佳补贴策略。基于旅客、航司、机场间的竞争博弈关系,构建了双层演化博弈模型。在上层博弈模型中,考虑旅客自学能力对票价的影响,构建融合自学习机制的Logit旅客选择模型,利用Hotelling定价模型分析同一航线航司间票价竞争对旅客选择行为的影响,进而确定在竞争条件下航司最佳定价策略;在下层博弈模型中,基于复制动态方程分析各机场补贴与航司间竞争性选择航线优化过程,确定机场间协同补贴策略与航线网络协同效果。结果表明:对于转移航线的航司,吸引“渗流”旅客的优势票价折扣区间为0.6~0.75;同航线竞争的航司票价折扣集中在0.6~0.85之间,可避免出现低价竞争带来的收益共损;通过机场差异化补贴实现航线网络优化,不同机场均存在基于差异化功能定位的最佳补贴区间。 展开更多
关键词 航空运输 差异化补贴策略 航线网络优化 双层演化博弈 复制动态方程
原文传递
基于改进NSGA Ⅲ-PSO的含风光柴储配电网优化调度方法研究
19
作者 范展滔 刘敬诚 《电测与仪表》 北大核心 2025年第11期167-175,209,共10页
微电网的不断接入使配电网结构日趋复杂、设备种类不断增多且运行方式趋于多样,为其运行调度的安全性和经济性带来了新的挑战。针对现有含微网配电网智能调度方法存在的模型维度高、求解困难、计算精度低等问题,文中提出了一种考虑风光... 微电网的不断接入使配电网结构日趋复杂、设备种类不断增多且运行方式趋于多样,为其运行调度的安全性和经济性带来了新的挑战。针对现有含微网配电网智能调度方法存在的模型维度高、求解困难、计算精度低等问题,文中提出了一种考虑风光柴储的配电网安全和经济调度双层模型。其中上层在考虑潮流和微电网交互等约束的条件下构建了总运行成本最低、网损和电压稳定性指数最小的多目标调度模型,通过改进的第三代非支配排序遗传算法对模型进行求解。下层则在储能和分布式电源等运行约束下构建了以微电网自身运行成本最低为目标的调度模型,通过改进粒子群算法对模型进行求解。结果表明,所提方法可以有效地兼顾经济性和安全性,通过两层模型的深入协调配合,实现多主体利益共赢。相比于常规方法,总成本降低大于3.00%,电压稳定性指数降低大于1.50%,总求解时间降低大于2.50%,具有一定的实用价值。 展开更多
关键词 配电网 微电网 双层模型 风光柴储 第三代非支配排序遗传算法 粒子群算法
在线阅读 下载PDF
计及谐波静态电压稳定的配电网光储容量优化 被引量:1
20
作者 王子辉 贾燕冰 +3 位作者 韩肖清 李彦晨 张泽 刘佳婕 《高电压技术》 北大核心 2025年第2期864-875,I0031-I0035,共17页
“双碳”背景下,大量分布式电源的接入增大了配网谐波注入,也使得系统静态电压稳定面临巨大的挑战。为此,该文分析了分布式电源并网后谐波对静态电压稳定的影响,并提出谐波静态电压稳定极限点和裕度指标,采用一种改进的N阶斐波那契对称... “双碳”背景下,大量分布式电源的接入增大了配网谐波注入,也使得系统静态电压稳定面临巨大的挑战。为此,该文分析了分布式电源并网后谐波对静态电压稳定的影响,并提出谐波静态电压稳定极限点和裕度指标,采用一种改进的N阶斐波那契对称搜索方法以加快谐波静态电压稳定分析速度。计及谐波静态稳定裕度提出一种配电网光储双层优化配置模型,上层以光储年投资运行成本、谐波静态电压稳定裕度、弃光率及储能收益为目标优化光储容量,探究光储并网容量与配网谐波及静态电压稳定裕度之间的联系;下层开展典型日运行模拟,以运行成本最低为目标分析光储运行情况,以典型场景分析规划方案对实际运行的影响。最后,以修改的IEEE-33系统验证了所提方法的有效性,结果表明,考虑谐波静态电压稳定裕度指标开展光储优化配置,可以避免典型场景下配电网谐波超标,提升配电网运行稳定裕度,降低运行成本,有序引导配电网光储建设。 展开更多
关键词 配电网 谐波 静态电压稳定 光储系统 双层优化
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部