The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredi...The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredictable.”In this study,a blast furnace com-prehensive status score and prediction method based on a cascade system and a combined model were proposed to address this issue.A dual cascade evaluation system was developed by integrating subjective and objective weighting methods.The analytic hierarchy process,coefficient of variation,entropy weight method,and impart combinatorial games were jointly employed to determine the optimal weight distribution across indicators.Categorized statuses(raw material,gas flow,furnace body,furnace cylinder,and iron-slag)were evaluated.Based on the five categories of the status data,the second cascade was applied to upgrade the quantitative evaluation of the comprehens-ive status.The weights of the different categories were 0.22,0.15,0.22,0.21,and 0.20,respectively.According to the data analysis,the results of the comprehensive status score closely matched the on-site production logs.Based on the blast furnace smelting period,the maximal information coefficient method was applied to the 100 parameters that were most relevant to the comprehensive status.A com-bined prediction model for a comprehensive status score was designed using bidirectional long short-term memory(BiLSTM)and categorical boosting(CatBoost).The test results indicated that the combined model reduced the mean absolute error by an average of 0.275 and increased the hit rate by an average of 5.65 percentage points compared to BiLSTM or CatBoost alone.When the er-ror range was±2.5,the combined model predicted a hit rate of 91.66%for the next hour’s comprehensive status score,and its high accur-acy was deemed satisfactory for the field.SHapley Additive exPlanations(SHAP)and regression fitting were applied to analyze the lin-ear quantitative relationship between the key variables and the comprehensive status score.When the furnace bottom center temperature was increased by 10℃,the comprehensive status score increased by 0.44.This method contributes to a more precise management and control of the comprehensive status of the blast furnace on-site.展开更多
According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierar...According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.展开更多
Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers ...Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.展开更多
Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digit...Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.展开更多
Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides ne...Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
In response to concerns over the recent expansion of the scope and content of urban design and the potential for“loss of focus”,this study uses the comprehensive urban design of Pudong New Area as a case study,empha...In response to concerns over the recent expansion of the scope and content of urban design and the potential for“loss of focus”,this study uses the comprehensive urban design of Pudong New Area as a case study,emphasizing a need to“refocus”urban design efforts.It traces the spatial evolution of Pudong New Area under national strategic guidance,addressing two primary issues from a“strategy-problem”perspective.Building on the link between municipal urban design and district-level master planning,the study proposes a key element system that integrates“significance,publicness,cultural relevance,and connectivity”and a control strategy based on unit typology and policy-guided zoning.By establishing a clear and concise district-level control framework focused on“element+scale”,the study aims to enhance Pudong’s modern spatial image and its holistic spatial order,reinforcing Pudong’s role as a“leading area for socialist modernization”.展开更多
A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and qu...A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.展开更多
Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index syste...Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.展开更多
The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in...The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Base...System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Based on analytic hierarchy process and Delphi methods,the natural resources security situation has been evaluated systematically from 1991 to 2007.The result showed that the overall level of China's natural resources security presented a downtrend from 1991 to 2007.The basic reasons are the pressure indicators such as population,GDP,natural resources trade increased gradually,resulting in tension and fragility of natural resources security.展开更多
This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It ...This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.展开更多
To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the...To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the operation state of the pitch system of WT based on fuzzy comprehensive evaluation.Firstly,based on SCADA data,the working state of the pitch system under rated power state and power state of WT were analyzed.Secondly,through the analysis of characteristic parameters and physical mechanism of the pitch system,the consistency principle of characteristic parameters,the stability principle of power under rated state,and the stability principle of blade angle underpowered state were obtained.Next,based on the aforementioned principles,the evaluation indexes were established,and the fuzzy comprehensive evaluation method was used to establish the operation state evaluation model of the pitch system under rated power state and under power state of the WT.Finally,an example was provided to verify the effectiveness of the method.The evaluation model established in this study can be used as a technical reference for the online monitoring of WT pitch systems to ensure the safe and stable operation of WTs.展开更多
The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of e...The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.展开更多
At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient d...At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient development of shale gas.In order to improve the content and the standard of reservoir evaluation,this paper analyzed the shortcomings and challenges in the static evaluation of shale gas reservoirs on the basis of existing reservoir evaluation,and established a method for evaluating shale gas reservoir effectiveness and a scheme for classifying pore systems.Then,the dynamic evaluation parameters after shale fracturing and their effects on drainage and production measures were discussed.In addition,the potential evaluation parameters of“automatic mitigating water blocking”were studied,and a comprehensive reservoir evaluation system of“staticedynamic”combination was established.And the following research results were obtained.First,new challenges to the shale gas reservoir evaluation are emerged as the lack of in-depth study on“reservoir effectiveness,dynamic evaluation parameter system after fracturing and drainage and production measures after fracturing”,which leads to the serious lag of existing shale gas reservoir evaluation system behind production.Second,the evaluation of reservoir effectiveness is mainly presented as the evaluation on the lower limit of effective porosity,and is embodied in the influence of clay bound water and unconnected pores on the development of shale gas.Third,the development of shale gas reservoir evaluation follows the trend of refining the static reservoir evaluation parameters,defining the potential evaluation indexes of“automatic mitigating water blocking”and establishing the reservoir comprehensive evaluation system of“staticedynamic”combination.Fourth,a post-frac dynamic evaluation system is determined for the potential evaluation indexes of“automatic mitigating water blocking”(e.g.,wettability,water imbibition retention capacity,water imbibition expansion mode,expansion rate,and water imbibition cracking capacity).Fifth,a reservoir evaluation idea is put forward that“static evaluation of shale gas reservoir is the foundation and postfrac dynamic evaluation is the complement”,and a comprehensive reservoir evaluation system is established of“staticedy-namic”combination suitable for the evaluation of marine shale gas reservoirs in China.展开更多
According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is ap...According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is applied in the practice teaching quality evaluation system, and improved the practice teaching quality evaluation results and the accuracy of visual, and promote the teaching management scientific, standardized and institutionalized. In order to establish incentive mechanism, it can bring a positive role to improve teaching quality.展开更多
Integrated Agricultural Development Project is an important part of China' s fiscal expenditure. Make a reasonable assessment to Integrated projects for agricultural development, not only can to protect the quality o...Integrated Agricultural Development Project is an important part of China' s fiscal expenditure. Make a reasonable assessment to Integrated projects for agricultural development, not only can to protect the quality of the project has been implemented, but also has important practical significance for enhancing China' s comprehensive agricultural production capacity. In this paper, combined with the present situation of China' s comprehensive agricultural development project performance evaluation, proposed the design process of comprehensive agricultural development project performance evaluation system, and analysis of the performance evaluation method selected.展开更多
The purpose of establishing a comprehensive evaluation index system of agricultural information service in rural areas is mainly to evaluate the level of agricultural information service reasonably, comprehensively an...The purpose of establishing a comprehensive evaluation index system of agricultural information service in rural areas is mainly to evaluate the level of agricultural information service reasonably, comprehensively and scientifically. In establishing the comprehensive evaluation index system of agricultural information service, some principles should be followed, i.e. operability, independence, safety and universality. At present, when constructing the comprehensive evaluation index system of agricultural information service, the comprehensive evaluation is mainly carried out around the basic service facilities of agricultural information, the internal and external environment during the construction of agricultural information, the data of agricultural information construction and the work of agricultural information construction, so as to ensure that the comprehensive evaluation index system of agricultural information service is practical, reasonable, comprehensive and scientific.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
基金supported by the Youth Program of National Natural Science Foundation of China(No.52404343)the General Program of National Natural Science Foundation of China(No.52274326)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.N2425031)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553)the Liaoning Province Science and Technology Plan Joint Program,China(Key Research and Development Program Project)(No.2023JH2/101800058).
文摘The comprehensive status of blast furnaces was one of the most important factors affecting their economy,quality,and longev-ity.The blast furnace comprehensive status had the nature of“black box,”and it was“unpredictable.”In this study,a blast furnace com-prehensive status score and prediction method based on a cascade system and a combined model were proposed to address this issue.A dual cascade evaluation system was developed by integrating subjective and objective weighting methods.The analytic hierarchy process,coefficient of variation,entropy weight method,and impart combinatorial games were jointly employed to determine the optimal weight distribution across indicators.Categorized statuses(raw material,gas flow,furnace body,furnace cylinder,and iron-slag)were evaluated.Based on the five categories of the status data,the second cascade was applied to upgrade the quantitative evaluation of the comprehens-ive status.The weights of the different categories were 0.22,0.15,0.22,0.21,and 0.20,respectively.According to the data analysis,the results of the comprehensive status score closely matched the on-site production logs.Based on the blast furnace smelting period,the maximal information coefficient method was applied to the 100 parameters that were most relevant to the comprehensive status.A com-bined prediction model for a comprehensive status score was designed using bidirectional long short-term memory(BiLSTM)and categorical boosting(CatBoost).The test results indicated that the combined model reduced the mean absolute error by an average of 0.275 and increased the hit rate by an average of 5.65 percentage points compared to BiLSTM or CatBoost alone.When the er-ror range was±2.5,the combined model predicted a hit rate of 91.66%for the next hour’s comprehensive status score,and its high accur-acy was deemed satisfactory for the field.SHapley Additive exPlanations(SHAP)and regression fitting were applied to analyze the lin-ear quantitative relationship between the key variables and the comprehensive status score.When the furnace bottom center temperature was increased by 10℃,the comprehensive status score increased by 0.44.This method contributes to a more precise management and control of the comprehensive status of the blast furnace on-site.
文摘According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.
基金Supported by the Natural Science Foundation of Guangxi Province(2011GXNSFB018061)the High-grade Scientific Research(Cultivation)Program of Qinzhou University(2014PY-SJ03,2014PY-SJ01)~~
文摘Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.
基金supported by the National Natural Science Foundation of China(72231008,72171193,and 72071153)the Science and Technology Innovation Group Program of Shaanxi Province(2024RS-CXTD-28)the Open Fund of Intelligent Control Laboratory(ICL-2023-0304).
文摘Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.
基金support of the National Natural Science Foundation of China(Grant No.52074332).
文摘Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
基金Sponsored by National Key R&D Projects in the“14th Five-year Plan”(2022YFC3800205)Shanghai Philosophy and Social Sciences Planning Project(2024VSJ034).
文摘In response to concerns over the recent expansion of the scope and content of urban design and the potential for“loss of focus”,this study uses the comprehensive urban design of Pudong New Area as a case study,emphasizing a need to“refocus”urban design efforts.It traces the spatial evolution of Pudong New Area under national strategic guidance,addressing two primary issues from a“strategy-problem”perspective.Building on the link between municipal urban design and district-level master planning,the study proposes a key element system that integrates“significance,publicness,cultural relevance,and connectivity”and a control strategy based on unit typology and policy-guided zoning.By establishing a clear and concise district-level control framework focused on“element+scale”,the study aims to enhance Pudong’s modern spatial image and its holistic spatial order,reinforcing Pudong’s role as a“leading area for socialist modernization”.
文摘A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.
文摘Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.
基金financially supported by the National Natural Science Fund, China (Grant Nos. 31200376, 41201586)the CAS Visiting Professor-Ship for Senior International Scientists (Grant No. 2013T2Z0011)
文摘The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金supported by the National Natural Science Foundation of China(Grant nos.70873119 and 40871253)Chinese Academy of Sciences Knowledge Innovation Program(Grant no.066U0401SZ)
文摘System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Based on analytic hierarchy process and Delphi methods,the natural resources security situation has been evaluated systematically from 1991 to 2007.The result showed that the overall level of China's natural resources security presented a downtrend from 1991 to 2007.The basic reasons are the pressure indicators such as population,GDP,natural resources trade increased gradually,resulting in tension and fragility of natural resources security.
基金supported by Ecole Nationale Superieure des Arts et Industries Textiles of Francethe National Science Foundation of China(Grant No.60074014)Sichuan Youth Science and Technology Foundation of China
文摘This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.
基金supported by National Natural Science Foundation of China(Nos.51875199 and 51905165)Hunan Natural Science Fund Project(2019JJ50186)the Key Research and Development Program of Hunan Province(No.2018GK2073).
文摘To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the operation state of the pitch system of WT based on fuzzy comprehensive evaluation.Firstly,based on SCADA data,the working state of the pitch system under rated power state and power state of WT were analyzed.Secondly,through the analysis of characteristic parameters and physical mechanism of the pitch system,the consistency principle of characteristic parameters,the stability principle of power under rated state,and the stability principle of blade angle underpowered state were obtained.Next,based on the aforementioned principles,the evaluation indexes were established,and the fuzzy comprehensive evaluation method was used to establish the operation state evaluation model of the pitch system under rated power state and under power state of the WT.Finally,an example was provided to verify the effectiveness of the method.The evaluation model established in this study can be used as a technical reference for the online monitoring of WT pitch systems to ensure the safe and stable operation of WTs.
文摘The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.
基金supported by the National Natural Science Foundation of China"Characterization of the Nanopore Structure and Research on Seepage in Shale Reservoir"(No.:51674044)the Applied Basic Research Project of the Sichuan Province"Research on Intelligent Evaluation System for Key Production Zone of Marine Shale Gas(Provincial Significant Project)"(No.:2019YJ0346)+1 种基金the Significant Emerging Enginecring Project of the Sichuan Province"Research on the method of evaluating the effectiveness of fracturing the shak gas reservoir on the basis of fracturing fluid flow-back law"(No.:2019JDRC0095)the Overseas Expertise Introduction Project for Discipline Innovation(111 project)"Base of Overseas Expertise Introduction for Discipline Innovation of High-Efficiency Development of Deep-Layer Marine Shale Gas"(No.:D18016).
文摘At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient development of shale gas.In order to improve the content and the standard of reservoir evaluation,this paper analyzed the shortcomings and challenges in the static evaluation of shale gas reservoirs on the basis of existing reservoir evaluation,and established a method for evaluating shale gas reservoir effectiveness and a scheme for classifying pore systems.Then,the dynamic evaluation parameters after shale fracturing and their effects on drainage and production measures were discussed.In addition,the potential evaluation parameters of“automatic mitigating water blocking”were studied,and a comprehensive reservoir evaluation system of“staticedynamic”combination was established.And the following research results were obtained.First,new challenges to the shale gas reservoir evaluation are emerged as the lack of in-depth study on“reservoir effectiveness,dynamic evaluation parameter system after fracturing and drainage and production measures after fracturing”,which leads to the serious lag of existing shale gas reservoir evaluation system behind production.Second,the evaluation of reservoir effectiveness is mainly presented as the evaluation on the lower limit of effective porosity,and is embodied in the influence of clay bound water and unconnected pores on the development of shale gas.Third,the development of shale gas reservoir evaluation follows the trend of refining the static reservoir evaluation parameters,defining the potential evaluation indexes of“automatic mitigating water blocking”and establishing the reservoir comprehensive evaluation system of“staticedynamic”combination.Fourth,a post-frac dynamic evaluation system is determined for the potential evaluation indexes of“automatic mitigating water blocking”(e.g.,wettability,water imbibition retention capacity,water imbibition expansion mode,expansion rate,and water imbibition cracking capacity).Fifth,a reservoir evaluation idea is put forward that“static evaluation of shale gas reservoir is the foundation and postfrac dynamic evaluation is the complement”,and a comprehensive reservoir evaluation system is established of“staticedy-namic”combination suitable for the evaluation of marine shale gas reservoirs in China.
文摘According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is applied in the practice teaching quality evaluation system, and improved the practice teaching quality evaluation results and the accuracy of visual, and promote the teaching management scientific, standardized and institutionalized. In order to establish incentive mechanism, it can bring a positive role to improve teaching quality.
文摘Integrated Agricultural Development Project is an important part of China' s fiscal expenditure. Make a reasonable assessment to Integrated projects for agricultural development, not only can to protect the quality of the project has been implemented, but also has important practical significance for enhancing China' s comprehensive agricultural production capacity. In this paper, combined with the present situation of China' s comprehensive agricultural development project performance evaluation, proposed the design process of comprehensive agricultural development project performance evaluation system, and analysis of the performance evaluation method selected.
文摘The purpose of establishing a comprehensive evaluation index system of agricultural information service in rural areas is mainly to evaluate the level of agricultural information service reasonably, comprehensively and scientifically. In establishing the comprehensive evaluation index system of agricultural information service, some principles should be followed, i.e. operability, independence, safety and universality. At present, when constructing the comprehensive evaluation index system of agricultural information service, the comprehensive evaluation is mainly carried out around the basic service facilities of agricultural information, the internal and external environment during the construction of agricultural information, the data of agricultural information construction and the work of agricultural information construction, so as to ensure that the comprehensive evaluation index system of agricultural information service is practical, reasonable, comprehensive and scientific.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.