Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To ...Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.展开更多
The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time consta...The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.展开更多
The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks(ANNs)with the use of global search particle swarm optimization(PSO)along with the...The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks(ANNs)with the use of global search particle swarm optimization(PSO)along with the competent local search interior-point programming(IPP)called as ANN-PSOIPP.The proposed computational scheme is implemented for the numerical simulations of the third order nonlinear delay differential Emden-Fowler model(TON-DD-EFM).The TON-DD-EFM is based on two types along with the particulars of shape factor,delayed terms,and singular points.A merit function is performed using the optimization of PSOIPP to find the solutions to the TON-DD-EFM.The effectiveness of the ANN-PSOIPP is certified through the comparison with the exact results for solving four examples of the TON-DD-EFM.The scheme’s efficiency is observed by performing the absolute error in suitable measures found around 10−04 to 10−07.Furthermore,the statistical-based assessments for 100 trials are provided to compute the accuracy,stability,and constancy of the ANNPSOIPP for solving the TON-DD-EFM.展开更多
基金supported by a fellowship from Design Department of Taisei Corporation。
文摘Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.
文摘The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.
基金This project is funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks(ANNs)with the use of global search particle swarm optimization(PSO)along with the competent local search interior-point programming(IPP)called as ANN-PSOIPP.The proposed computational scheme is implemented for the numerical simulations of the third order nonlinear delay differential Emden-Fowler model(TON-DD-EFM).The TON-DD-EFM is based on two types along with the particulars of shape factor,delayed terms,and singular points.A merit function is performed using the optimization of PSOIPP to find the solutions to the TON-DD-EFM.The effectiveness of the ANN-PSOIPP is certified through the comparison with the exact results for solving four examples of the TON-DD-EFM.The scheme’s efficiency is observed by performing the absolute error in suitable measures found around 10−04 to 10−07.Furthermore,the statistical-based assessments for 100 trials are provided to compute the accuracy,stability,and constancy of the ANNPSOIPP for solving the TON-DD-EFM.