期刊文献+
共找到4,676篇文章
< 1 2 234 >
每页显示 20 50 100
In vivo label-free measurement of blood flow velocity symmetry based on dual line scanning third-harmonic generation microscopy excited at the 1700 nm window 被引量:1
1
作者 Hui Cheng Jincheng Zhong +1 位作者 Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期61-68,共8页
Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in... Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions. 展开更多
关键词 1700 nm-Window third-harmonic generation imaging blood flow velocity
原文传递
Optical third-harmonic generation of spherical quantum dots under inversely quadratic Hellmann plus inversely quadratic potential
2
作者 Xing Wang Xuechao Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第9期158-163,共6页
The third-harmonic generation(THG)coefficient for a spherical quantum dot system with inversely quadratic Hellmann plus inversely quadratic potential is investigated theoretically,considering the regulation of quantum... The third-harmonic generation(THG)coefficient for a spherical quantum dot system with inversely quadratic Hellmann plus inversely quadratic potential is investigated theoretically,considering the regulation of quantum size,confinement potential depth and the external environment.The numerical simulation results indicate that the THG coefficient can reach the order of 10~(-12)m~2V~(-2),which strongly relies on the tunable factor,with its resonant peak experiencing a redshift or blueshift.Interestingly,the effect of temperature on the THG coefficient in terms of peak location and size is consistent with the quantum dot radius but contrasts with the hydrostatic pressure.Thus,it is crucial to focus on the influence of internal and external parameters on nonlinear optical effects,and to implement the theory in practical experiments and the manufacture of optoelectronic devices. 展开更多
关键词 nonlinear optical effects quantum dot inversely quadratic hellmann potential inversely quadratic potential third harmonic generation coefficient
原文传递
Polaronic Electron-Phonon Interactions on the Third-Harmonic Generation in a Square Quantum Well 被引量:6
3
作者 LU Zhi-En GUO Kang-Xian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期171-174,共4页
The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix app... The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix approach and iterative method, and the numerical results are presented for a GaAs square quantum well. The results show that the third-harmonic generation coefficient is obviously enhanced after considering the influence of electron-phonon interactions. 展开更多
关键词 electron-phonon interactions third-harmonic generation NONLINEARITY
在线阅读 下载PDF
Third-harmonic generation and imaging with resonant Si membrane metasurface 被引量:3
4
作者 Ze Zheng Lei Xu +9 位作者 Lujun Huang Daria Smirnova Khosro Zangeneh Kamali Arman Yousefi Fu Deng Rocio Camacho-Morales Cuifeng Ying Andrey E.Miroshnichenko Dragomir N.Neshev Mohsen Rahmani 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第8期18-27,共10页
Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compare... Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compared to metasurfaces composed of the periodic arrangement of nanoparticles,inverse,so-called,membrane metasurfaces offer unique possibilities for supporting multipolar resonances,while maintaining small unit cell size,large mode volume and high field enhancement for enhancing nonlinear frequency conversion.Here,we theoretically and experimentally investigate the formation of bound states in the continuum(BICs)from silicon dimer-hole membrane metasurfaces.We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films.Furthermore,we show that by tuning the gap between the holes,one can open a leaky channel to transform these regular BICs into quasi-BICs,which can be excited directly under normal plane wave incidence.To prove the capabilities of such metasurfaces,we demonstrate the conversion of an infrared image to the visible range,based on the Third-harmonic generation(THG)process with the resonant membrane metasurfaces.Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies. 展开更多
关键词 nonlinear imaging third-harmonic generation bound states in the continuum membrane metasurfaces
在线阅读 下载PDF
Deep-skin third-harmonic generation(THG)imaging in vivo excited at the 2200 nm window 被引量:2
5
作者 Xinlin Chen Yi Pan +1 位作者 Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第4期58-65,共8页
The skin is heterogeneous and exerts strong scattering and aberration onto excitation light in multiphoton microscopy(MPM).Shifting to longer excitation wavelengths may help reduce skin scattering and aberration,poten... The skin is heterogeneous and exerts strong scattering and aberration onto excitation light in multiphoton microscopy(MPM).Shifting to longer excitation wavelengths may help reduce skin scattering and aberration,potentially enabling larger imaging depths.However,previous demonstrations of skin MPM employ excitation wavelengths only up to the 1700 nm window,leaving an open question as to whether longer excitation wavelengths are suitable for deep-skin MPM.Here,in order to explore the longer-wavelength territory,first,we demonstrate characterization of the broadband transmittance of excised mouse skin,revealing a high transmittance window at 2200nm.Then,we demonstrate third-harmonic generation(THG)imaging in mouse skin in vivo excited at this window.With 9mW optical power on the skin surface operating at 1MHz repetition rate,we can get THG signals of 250m below the skin surface.Comparative THG imaging excited at the 1700nm window shows that as imaging depth increases,THG signals decay even faster than those excited at 2200 nm.Our results thus uncover the 2200 nm window as a new,promising excitation window potential for deep-skin MPM. 展开更多
关键词 third-harmonic generation 2200 nm 1700 nm SKIN
原文传递
Spectral modulation of third-harmonic generation by molecular alignment and preformed plasma 被引量:1
6
作者 李敏 李安原 +2 位作者 何泊衢 袁帅 曾和平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期196-199,共4页
We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating ... We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating from various molecular alignment revivals. Furthermore, the spectrum and spatial distribution of the generated third harmonic pulse change dramatically in the presence of a preformed plasma. Under the influence of a preformed plasma, a narrower third harmonic spectrum is observed, and the conical third-harmonic pulse increases while the axial part decreases. The investigation provides an effective method to modulate the spectral characteristic and spatial distribution of third-harmonic generation from intense femtosecond filament. 展开更多
关键词 third-harmonic generation laser filament molecular alignment
原文传递
Electronic and Optical Properties of a Lens Shaped Quantum Dot under Magnetic Field: Second and Third-Harmonic Generation 被引量:2
7
作者 R.Khordad H.Bahramiyan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第8期283-289,共7页
In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the fi... In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the finite element method(FEM) for different values of magnetic field. We have also studied effect of magnetic field on second harmonic generation(SHG) and third-harmonic generation(THG) in the lens-shaped quantum dot. In this regard, we have obtained an analytic expression for the SHG and THG by a compact density matrix approach and an iterative procedure. According to the obtained results, it is found that the presence of the magnetic field affects the symmetry of the system. The SHG and THG are decreased with increasing the magnetic field. The magnetic field has a great influence on the energy levels, wave functions, the SHG and THG in a lens shaped quantum dot. 展开更多
关键词 quantum DOT optical properties HARMONIC generations magnetic field
原文传递
Third-harmonic generation via rapid adiabatic passage based on gradient deuterium KD_(x)H_(2-x)PO_(4)crystal
8
作者 Lailin Ji Li Yin +12 位作者 Jinsheng Liu Xianghe Guan Mingxia Xu Xun Sun Dong Liu Hao Xu Ruijing He Tianxiong Zhang Wei Feng Yong Cui Xiaohui Zhao Yanqi Gao Zhan Sui 《High Power Laser Science and Engineering》 2025年第2期29-35,共7页
Broadband frequency-tripling pulses with high energy are attractive for scientific research,such as inertial confinement fusion,but are difficult to scale up.Third-harmonic generation via nonlinear frequency conversio... Broadband frequency-tripling pulses with high energy are attractive for scientific research,such as inertial confinement fusion,but are difficult to scale up.Third-harmonic generation via nonlinear frequency conversion,however,remains a trade-off between bandwidth and conversion efficiency.Based on gradient deuterium deuterated potassium dihydrogen phosphate(KD_(x)H_(2-x)PO_(4),DKDP)crystal,here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility.The efficiency dependence on the phase-matching angle in a Type-II configuration is studied.We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%.These results,to the best of our knowledge,represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses.Our research paves a new way for developing high-efficiency,large-bandwidth frequency-tripling technology. 展开更多
关键词 DKDP crystal nonlinear frequency conversion rapid adiabatic passage third-harmonic generation
原文传递
Resonantly enhanced second-and third-harmonic generation in dielectric nonlinear metasurfaces 被引量:1
9
作者 Ji Tong Wang Pavel Tonkaev +5 位作者 Kirill Koshelev Fangxing Lai Sergey Kruk Qinghai Song Yuri Kivshar Nicolae C.Panoiu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期5-19,共15页
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm... Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices. 展开更多
关键词 second-harmonic generation third-harmonic generation bound state in the continuum guided mode resonance all-dielectric metasurfaces nonlinear optics
在线阅读 下载PDF
Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings
10
作者 Yijia Zang Ruoheng Chai +4 位作者 Wenwei Liu Zhancheng Li Hua Cheng Jianguo Tian Shuqi Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第4期81-87,共7页
Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to the resonance-and symmetry-based light-matter interactions supported by the artificial struc... Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to the resonance-and symmetry-based light-matter interactions supported by the artificial structures.However,the nonlinear conversion efficiency is generally limited by the angular dispersion of optical resonances especially in nonparaxial photonics.Here,we propose a metagrating realizing a quasi-bound-state in the continuum in a flat band to dramatically improve the third harmonic generation(THG)efficiency.A superior operating angular range is achieved based on the interlayer and intralayer couplings,which are introduced by breaking the mirror symmetry of the metagrating.We demonstrate the relation of angular dispersion between the nonlinear and linear responses at different incident angles.We also elucidate the mechanism of these offaxis flat-band-based nonlinear conversions through different mode decomposition.Our scheme provides a robust and analytical way for nonparaxial nonlinear generation and paves the way for further applications such as wide-angle nonlinear information transmission and enhanced nonlinear generation under tight focusing. 展开更多
关键词 nonlinear metasurfaces quasi-bound-state in the continuum angular dispersion third harmonic generation efficiency
原文传递
Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser
11
作者 李春玲 成佳 +5 位作者 朱仁江 王涛 蒋丽丹 佟存柱 宋晏蓉 张鹏 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第5期58-62,共5页
The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency t... The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields. 展开更多
关键词 third-harmonic generation self-mode locking semiconductor disk laser ULTRAVIOLET
原文传递
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
12
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Performance analysis of scramjet including magnetohydrodynamic power generation after combustor
13
作者 LIU Chenyuan WU Shaoxun MENG Hao 《推进技术》 北大核心 2025年第8期15-28,共14页
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b... To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%. 展开更多
关键词 SCRAMJET Energy bypass Magnetohydrodynamic power generation Chemical balance Performance evaluation
原文传递
Optimizing the generation of second harmonic optical vortices from nonlinear photonic crystals
14
作者 LIU Shiqiang ZHANG Xinyu +4 位作者 CHEN Yan LI Shifeng ZHAO Gang ZHU Shining HU Xiaopeng 《物理学进展》 北大核心 2025年第4期161-168,共8页
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex... The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs. 展开更多
关键词 optical vortex nonlinear photonic crystal second harmonic generation orbital angular momentum
在线阅读 下载PDF
Anime Generation through Diffusion and Language Models:A Comprehensive Survey of Techniques and Trends
15
作者 Yujie Wu Xing Deng +4 位作者 Haijian Shao Ke Cheng Ming Zhang Yingtao Jiang Fei Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期2709-2778,共70页
The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation... The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation. 展开更多
关键词 Diffusion models language models anime generation image synthesis video generation stable diffusion AIGC
在线阅读 下载PDF
Experimental study on heat and gas generation characteristics of commercial sodium-ion batteries during thermal runaway
16
作者 Zhuangzhuang Jia Huang Li Qingsong Wang 《Journal of Energy Chemistry》 2025年第10期357-367,共11页
Sodium-ion batteries have gradually been commercialized due to their wide range of material sources and low cost.However,there are few studies focusing on the commercial sodium-ion battery safety,especially the relati... Sodium-ion batteries have gradually been commercialized due to their wide range of material sources and low cost.However,there are few studies focusing on the commercial sodium-ion battery safety,especially the relationship between heat and gas generation is unclear.This work conducts the thermal runaway(TR)experiments of commercial 18650 sodium-ion batteries with different states of charge(SOCs)under adiabatic accelerated rate calorimetry and localized overheating.The results show that heat generation values of 50% and 100%SOC batteries during TR are 175.2 and 328.2 J g^(-1),respectively.Whereas,0%SOC batteries do not trigger TR.Moreover,the reaction sources and pathways of gas generation during TR are critically sorted out.Finally,two important conclusions are obtained.(i)During the five stages of TR,the heat generation from the safe venting to the triggering of TR stage is the highest in 50%SOC batteries,accounting for 62.5% of the total heat generation.However,for 100%SOC batteries,the heat generation from triggering TR to maximum temperature stage has the largest proportion during TR,at 57%.The 50%SOC batteries present characteristic of slow heat generation,while the 100%SOC batteries show characteristics of accelerated heat generation.(ii)Based on dimensionless analysis,the heat/gas generation ratios of 50% and 100%SOC batteries are 0.262 and 0.028,respectively.The gas generation behavior occur earlier than heat generation behavior during the whole process of TR of sodium-ion batteries.This study provides a direction for the development of high-safety sodium-ion batteries and thermal runaway suppression technology. 展开更多
关键词 Sodium-ion battery safety Thermal runaway Gas generation Heat generation Reaction mechanism
在线阅读 下载PDF
Simultaneous second and third harmonics generation in periodically poled lithium niobate:Coupling and competition
17
作者 Junming Liu Liqiang Liu +1 位作者 Lihong Hong Zhiyuan Li 《Chinese Physics B》 2025年第8期591-599,共9页
Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bu... Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios. 展开更多
关键词 second harmonic generation third harmonic generation quasi-phase matching periodically poled lithium niobate
原文传递
Artificial intelligence assisted ultrasound report generation
18
作者 Jia-Hui Zeng Kai-Kai Zhao Ning-Bo Zhao 《Artificial Intelligence in Medical Imaging》 2025年第1期13-20,共8页
Artificial intelligence(AI)assisted ultrasound report generation represents a technology that leverages artificial intelligence to convert ultrasound imaging analysis results into structured diagnostic reports.By inte... Artificial intelligence(AI)assisted ultrasound report generation represents a technology that leverages artificial intelligence to convert ultrasound imaging analysis results into structured diagnostic reports.By integrating image recognition and natural language generation models,AI systems can automatically detect and analyze lesions or abnormalities in ultrasound images,generating textual descriptions of diagnostic conclusions(e.g.,fatty liver,liver fibrosis,automated BIRADS grading of breast lesions),imaging findings,and clinical recommendations to form comprehensive reports.This technology enhances the efficiency and accuracy of imaging diagnosis,reduces physicians’workloads,ensures report standardization and consistency,and provides robust support for clinical decisionmaking.Current state-of-the-art algorithms for automated ultrasound report generation primarily rely on vision-language models,which harness the generalization capabilities of large language models and large vision models through multimodal(language+vision)feature alignment.However,existing approaches inadequately address challenges such as numerical measurement generation,effective utilization of report templates,incorporation of historical reports,learning text-image correlations,and overfitting under limited data conditions.This paper aims to introduce the current state of research on ultrasound report generation,the existing issues,and to provide some thoughts for future research. 展开更多
关键词 Artificial intelligence Ultrasound report generation Vision-Language Models Natural language generation Large language model
在线阅读 下载PDF
The hydrocarbon generation potential of the mudstone source rock in the Jurassic Shuixigou Group,the Turpan-Hami Basin,and indicative significance for oil and gas exploration
19
作者 Tong Lin Kangle Wang +3 位作者 Haidong Wang Runze Yang Pan Li Long Su 《Natural Gas Industry B》 2025年第1期50-63,共14页
The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of th... The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin. 展开更多
关键词 Turpan-Hami Basin Gas generation potential Hydrocarbon generation characteristics Sangonghe Formation mudstone Xishanyao Formation mudstone Gold tube simulation experiment
在线阅读 下载PDF
Hydrocarbon generation reaction kinetics study on supercritical water conversion of centimeter sized medium and low maturity organic-rich shale
20
作者 Tian Xie Qiu-Yang Zhao +2 位作者 Hui Jin Ye-Chun Wang Lie-Jin Guo 《Petroleum Science》 2025年第5期2203-2214,共12页
Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrol... Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrolysis kinetics model and a new refined pyrolysis kinetics model were used to forecast the composition distribution of hydrocarbon generation products co-heated by supercritical water and medium and low maturity organic-rich shale.The prediction accuracy of the two reaction kinetics models for the composition of pyrolysis products of organic-rich shale was compared.The reaction path of hydrocarbon generation in centimeter sized organic-rich shale under the action of supercritical water was identified.The results show that the prediction accuracy of the classical segmented pyrolysis kinetics model was poor at the initial stage of the reaction,and gradually increased with increasing time.The prediction error can reach less than 25%when the reaction time was 12 h.The new refined model of reaction kinetics established is better than the classical reaction kinetics model in predicting the product distribution of pyrolysis oil and gas,and its prediction error is less than 14%in this paper.The reaction paths of hydrocarbon generation in centimeter sized organic-rich shale under supercritical water conversion mainly include organic-rich shale directly generates asphaltene and saturated hydrocarbon,asphaltene pyrolysis generates saturated hydrocarbon,aromatic hydrocarbon and resin,saturated hydrocarbon,aromatic hydrocarbon and resin polymerization generates asphaltene,and saturated hydrocarbon,resin and asphaltene generates gas.The reason for the difference of centimeter sized and millimeter sized medium and low maturity organic-rich shales hydrocarbon generation in supercritical water is that the increase of shale size promotes the reaction path of polymerization of saturated hydrocarbon and aromatic hydrocarbon to asphaltene. 展开更多
关键词 Organic-rich shale Supercritical water CONVERSION Hydrocarbon generation Kinetics
原文传递
上一页 1 2 234 下一页 到第
使用帮助 返回顶部