Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermo...Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermoplastic and thermoset plastics,the development of high-performance degradable polymer adhesives is rare.Here,we have prepared high-performance nucleobase-containing thioctic acid-based supramolecular polymer adhesives through free radical polymerization.The specific hydrogen-bonding interactions between complementary nucleobases greatly improve the weak cohesion of the thioctic acid-based polymers and enhance the environmental stability of the thioctic acidbased polymers simultaneously.Degradation of the nucleobase-containing thioctic acid-based supramolecular polymers is achieved by the reduction of the disulfide backbone,and the cycle of degradation and repolymerization is further achieved via oxidative polymerization.The adhesion strength of the nucleobase-containing thioctic acid-based supramolecular polymers after two cycles of degradation and repolymerization still reaches as high as 4.7±0.3 MPa.This work provides an approach for the development of environmentally stable and high-performance degradable thioctic acid-based adhesives.展开更多
AIM: To detect whether the combination of vincamine, thioctic acid and lutein will improve the retina and optic nerve functions in cases of an opaque media with an optic nerve and/or a retinal defect or not.METHODS: T...AIM: To detect whether the combination of vincamine, thioctic acid and lutein will improve the retina and optic nerve functions in cases of an opaque media with an optic nerve and/or a retinal defect or not.METHODS: Totally 2000 patients(2000 eyes) of corneal opacities with defects in the optic nerve or/and the retinal functions were studied. Every patient received three types of drugs: thioctic acid with cyanocobalamine, vincamine, and lutein. The drugs were given daily for 3-12 mo according to patient’s responses. Full field flash electroretinogram(ERG) and flash visual evoked potential(VEP) were done before treatment and at 1, 3, 6, and 12 mo sequentially. Patients were followed up for 12 mo.RESULTS: In the 2000 eyes, 1000 eyes had both moderate optic nerve and retinal function defects;and 840 eyes out of the 1000 improved with the medical treatment. Another 500 eyes out of the 2000 eyes had extinguished retinal function with normal optic nerve function and only 125 eyes of them improved. The 290 out of the 2000 eyes had severe defects in optic nerve with normal retinal function and 130 of them improved. Another 210 eyes have mild optic nerve and retinal function defects and 194 improved.CONCLUSION: The combination of vincamine, thioctic acid with cyanocobalamine, and lutein improved both retina and optic nerve functions mainly in mild and moderate defect than in severe cases.展开更多
45 female patients with polycystic ovary syndrome took thioctic acid (Thioctacid-HR), 600 mg (n = 25) or high protein diet (n = 20). Fast insulin and glucose stimulus insulin were investigated before and after 3 month...45 female patients with polycystic ovary syndrome took thioctic acid (Thioctacid-HR), 600 mg (n = 25) or high protein diet (n = 20). Fast insulin and glucose stimulus insulin were investigated before and after 3 months taken treatment. The use of thioctic acid, 600 mg is a new effective pathogenetics therapy of polycystic ovary syndrome on influence of hyperinsulinemia, HOMA-IR index and ovary volume in female patients with polycystic ovary syndrome.展开更多
Elastomers with high strength and toughness,excellent self-healing properties,and biocompatibility have broad application prospects in wearable electronics and other fields,but preparing it remains a challenge.In this...Elastomers with high strength and toughness,excellent self-healing properties,and biocompatibility have broad application prospects in wearable electronics and other fields,but preparing it remains a challenge.In this work,we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine(TEA)to the poly(thioctic acid)(PTA)chains and preparing the PAx Ey elastomers using a simple synthesis step.This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks,endowing materials with excellent strength and toughness(tensile strength of 288 kPa,toughness of 278.2 kJ/m3),admirable self-healing properties(self-healing efficiency of 121.6%within 7 h at 70℃),and good biocompatibility.The PAx Ey elastomers can also be combined with MWNTs to become flexible strain sensors,which can be used to monitor human joint movements with high sensitivity,repeatable responses,and stability.展开更多
Electrochemical impedance spectroscopy was employed to investigate the permeation of electrolyte ions in thioctic acid self-assembled monolayer when its structure was changed by the interaction of copper ions. The ion...Electrochemical impedance spectroscopy was employed to investigate the permeation of electrolyte ions in thioctic acid self-assembled monolayer when its structure was changed by the interaction of copper ions. The ion permeation was evaluated by using relatively low excitation frequencies, 0.2 Hz to 1000 Hz, and quantified by an extra resistive component in the equivalent circuit (RSAM). The extent of ion permeation affected by the electrode potentials and the electrolyte concentration were investigated. The experimental results verified that RSAM decreased ~70% by interaction with copper ions and that RSAM increased ~2 - 3 times when the electrolyte concentration was decreased by 10 times. This analysis can be performed without addition of redox species.展开更多
Objective:To observe the efficacy of pentoxifylline+thioctic acid in the treatment of patients with painful diabetic peripheral neuropathy(PDPN).Methods:70 patients with PDPN admitted from October 2019 to October 2022...Objective:To observe the efficacy of pentoxifylline+thioctic acid in the treatment of patients with painful diabetic peripheral neuropathy(PDPN).Methods:70 patients with PDPN admitted from October 2019 to October 2022 were selected and randomly grouped,with pentoxifylline+thioctic acid treatment in Group A and thioctic acid treatment in Group B,and the treatment efficacy was compared.Results:The treatment efficacy in Group A was higher than that of Group B,P<0.05;the points of each symptom of PDPN in Group A were lower than that of Group B,P<0.05;the C-reactive protein and electromyography indexes of PDPN patients in Group A were better than that of Group B,P<0.05.Conclusion:PDPN patients treated with pentoxifylline+thioctic acid can optimize nerve function,inhibit inflammation progression,and reduce PDPN symptoms,which is an efficient and feasible treatment option.展开更多
Poly(disulfide)s have been widely used in flexible wearable electronics,smart materials,and drug delivery.The synthesis of poly(disulfide)s usually utilizes external stimuli or toxic initiators to promote the polymeri...Poly(disulfide)s have been widely used in flexible wearable electronics,smart materials,and drug delivery.The synthesis of poly(disulfide)s usually utilizes external stimuli or toxic initiators to promote the polymerization.Here,we indicated that the long-range electronic effect can significantly alter the reactivity of the disulfide group.Accordingly,we established deprotonation-promoted ring-opening polymerization of thioctic acid(TA)as a highly effective and simple method to synthesize poly(disulfide)s due to the long-range electronic effect and nucleophilic carboxylate.Without external stimuli and initiators,simple mixing of TA and deprotonation reagent,choline bicarbonate,in different ratios at room temperature rapidly produced a series of high molecular weight(up to 772 kDa)ionic liquid crystal poly(disulfide)s elastomers with room temperature self-healing ability,adjustable conductivity(2.39×10^(−2)∼0.28×10^(−2)S m^(−1)),degradability,biocompatibility,antibacterial property,and tissue-like softness(Young’s moduli ranging from 18.2±6.0 to 111.1±36.7 kPa).The experiments and density functional theory calculations also revealed the principle of long-range electronic effect to establish a new synthetic strategy of poly(disulfide)s with superior properties favorable for bioelectronics.展开更多
With the fast generation of electronic waste(e-waste)and the increasing depletion of metal resources,“urban mining”that can selectively recover gold from secondary resources has attracted great interest.Construction...With the fast generation of electronic waste(e-waste)and the increasing depletion of metal resources,“urban mining”that can selectively recover gold from secondary resources has attracted great interest.Construction of materials with high extraction capacity and satisfying selectivity in complex aqueous-based matrices still remains challenging.Here,a novel metal-organic framework/polymer composite(Fe-BTC/poly(thioctic acid),denoted as Fe-BTC/pTA)has been newly synthesized and applied for selective gold recovery in different matrices(river water,seawater,and leaching solution of e-waste).Benefiting from the high specific surface area and suitable pore sizes as well as the rational design of active sites,the composite exhibits high adsorption capacity(920 mg/g),high removal efficiency(>99%),fast kinetics(below 0.1 ppb within 10 min),and good applicability in complex matrices,which are better than those of most reported sulfur-containing adsorbents.Solid-state metallic gold with high purity can be effectively enriched due to the high recyclability and long-term stability of the composite.The material after adsorption can be further applied as a heterogeneous catalyst for water remediation due to the in situ generated gold nanoparticles by the redox reaction between Au(III)ions and the S-containing groups in the composites.展开更多
Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermal...Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermally mediated in situ repair and encapsulation strategy to construct high-performance PSCs by incorporating piperazine thioctic acid salt(TAPPZ)as a dopant into the perovskite precursor Thermally dissociated piperazine(PPZ)from TAPPZ integrates microcrystals to form larger grain(>2000 nm),while the carboxylic acid in thioctic acid(TA)and the amine salt in TAPPZ synergistically passivate and transform PbI_(2),significantly reducing its residual amount.Additionally,TAPPZ undergoe thermal self-crosslinking during perovskite annealing,enabling melt-polymerization to form in situ encapsulation for enhanced water resistance.The TAPPZ-incorporated device achieves a remarkable efficiency of 25.65% and exhibits excellent operational stability,retaining over 90% of its initial efficiency after 2000 h under ambient conditions(20-30℃,20%-30% relative humidity).This study provide new insights into the construction of high-performance perovskite solar cells by designing and synthe sizing multifunctional single molecules for in situ repair and encapsulation of perovskites.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22273098,22373003,22103002 and 52033001)the Key Project of Anhui Province Science and Technology Innovation Platform(No.202305a12020030)the financial support from the Anhui Provincial Natural Science Foundation(No.2408085Y004)。
文摘Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermoplastic and thermoset plastics,the development of high-performance degradable polymer adhesives is rare.Here,we have prepared high-performance nucleobase-containing thioctic acid-based supramolecular polymer adhesives through free radical polymerization.The specific hydrogen-bonding interactions between complementary nucleobases greatly improve the weak cohesion of the thioctic acid-based polymers and enhance the environmental stability of the thioctic acidbased polymers simultaneously.Degradation of the nucleobase-containing thioctic acid-based supramolecular polymers is achieved by the reduction of the disulfide backbone,and the cycle of degradation and repolymerization is further achieved via oxidative polymerization.The adhesion strength of the nucleobase-containing thioctic acid-based supramolecular polymers after two cycles of degradation and repolymerization still reaches as high as 4.7±0.3 MPa.This work provides an approach for the development of environmentally stable and high-performance degradable thioctic acid-based adhesives.
文摘AIM: To detect whether the combination of vincamine, thioctic acid and lutein will improve the retina and optic nerve functions in cases of an opaque media with an optic nerve and/or a retinal defect or not.METHODS: Totally 2000 patients(2000 eyes) of corneal opacities with defects in the optic nerve or/and the retinal functions were studied. Every patient received three types of drugs: thioctic acid with cyanocobalamine, vincamine, and lutein. The drugs were given daily for 3-12 mo according to patient’s responses. Full field flash electroretinogram(ERG) and flash visual evoked potential(VEP) were done before treatment and at 1, 3, 6, and 12 mo sequentially. Patients were followed up for 12 mo.RESULTS: In the 2000 eyes, 1000 eyes had both moderate optic nerve and retinal function defects;and 840 eyes out of the 1000 improved with the medical treatment. Another 500 eyes out of the 2000 eyes had extinguished retinal function with normal optic nerve function and only 125 eyes of them improved. The 290 out of the 2000 eyes had severe defects in optic nerve with normal retinal function and 130 of them improved. Another 210 eyes have mild optic nerve and retinal function defects and 194 improved.CONCLUSION: The combination of vincamine, thioctic acid with cyanocobalamine, and lutein improved both retina and optic nerve functions mainly in mild and moderate defect than in severe cases.
文摘45 female patients with polycystic ovary syndrome took thioctic acid (Thioctacid-HR), 600 mg (n = 25) or high protein diet (n = 20). Fast insulin and glucose stimulus insulin were investigated before and after 3 months taken treatment. The use of thioctic acid, 600 mg is a new effective pathogenetics therapy of polycystic ovary syndrome on influence of hyperinsulinemia, HOMA-IR index and ovary volume in female patients with polycystic ovary syndrome.
基金supported by the National Natural Science Foundation of China(No.52073099)the Guangdong Basic and Applied Basic Research Foundation(No.2024A1515010847)the Guangdong Project of R&D Plan in Key Areas(No.2020B010180001)。
文摘Elastomers with high strength and toughness,excellent self-healing properties,and biocompatibility have broad application prospects in wearable electronics and other fields,but preparing it remains a challenge.In this work,we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine(TEA)to the poly(thioctic acid)(PTA)chains and preparing the PAx Ey elastomers using a simple synthesis step.This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks,endowing materials with excellent strength and toughness(tensile strength of 288 kPa,toughness of 278.2 kJ/m3),admirable self-healing properties(self-healing efficiency of 121.6%within 7 h at 70℃),and good biocompatibility.The PAx Ey elastomers can also be combined with MWNTs to become flexible strain sensors,which can be used to monitor human joint movements with high sensitivity,repeatable responses,and stability.
文摘Electrochemical impedance spectroscopy was employed to investigate the permeation of electrolyte ions in thioctic acid self-assembled monolayer when its structure was changed by the interaction of copper ions. The ion permeation was evaluated by using relatively low excitation frequencies, 0.2 Hz to 1000 Hz, and quantified by an extra resistive component in the equivalent circuit (RSAM). The extent of ion permeation affected by the electrode potentials and the electrolyte concentration were investigated. The experimental results verified that RSAM decreased ~70% by interaction with copper ions and that RSAM increased ~2 - 3 times when the electrolyte concentration was decreased by 10 times. This analysis can be performed without addition of redox species.
文摘Objective:To observe the efficacy of pentoxifylline+thioctic acid in the treatment of patients with painful diabetic peripheral neuropathy(PDPN).Methods:70 patients with PDPN admitted from October 2019 to October 2022 were selected and randomly grouped,with pentoxifylline+thioctic acid treatment in Group A and thioctic acid treatment in Group B,and the treatment efficacy was compared.Results:The treatment efficacy in Group A was higher than that of Group B,P<0.05;the points of each symptom of PDPN in Group A were lower than that of Group B,P<0.05;the C-reactive protein and electromyography indexes of PDPN patients in Group A were better than that of Group B,P<0.05.Conclusion:PDPN patients treated with pentoxifylline+thioctic acid can optimize nerve function,inhibit inflammation progression,and reduce PDPN symptoms,which is an efficient and feasible treatment option.
基金supported by the National Key Research and Development Program of China(grant nos.2021YFC2101800 and 2021YFC2400802)the National Natural Science Foundation of China(grantnos.52173117 and 21991123)+5 种基金Belt&Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai(grant no.20520741000)Ningbo 2025 Science and Technology Major Project(grant no.2019B10068)the Natural Science Foundation of Shanghai(grant no.20ZR1402500)Science and Technology Commission of Shanghai Municipality(grant nos.20DZ2254900and 20DZ2270800)the Fundamental Research Funds for the Central Universities,DHU Distinguished Young Professor Program(grant no.LZA2019001)the Biomedical Engineering fund of Shanghai Jiao Tong University(grant no.YG2021GD04).
文摘Poly(disulfide)s have been widely used in flexible wearable electronics,smart materials,and drug delivery.The synthesis of poly(disulfide)s usually utilizes external stimuli or toxic initiators to promote the polymerization.Here,we indicated that the long-range electronic effect can significantly alter the reactivity of the disulfide group.Accordingly,we established deprotonation-promoted ring-opening polymerization of thioctic acid(TA)as a highly effective and simple method to synthesize poly(disulfide)s due to the long-range electronic effect and nucleophilic carboxylate.Without external stimuli and initiators,simple mixing of TA and deprotonation reagent,choline bicarbonate,in different ratios at room temperature rapidly produced a series of high molecular weight(up to 772 kDa)ionic liquid crystal poly(disulfide)s elastomers with room temperature self-healing ability,adjustable conductivity(2.39×10^(−2)∼0.28×10^(−2)S m^(−1)),degradability,biocompatibility,antibacterial property,and tissue-like softness(Young’s moduli ranging from 18.2±6.0 to 111.1±36.7 kPa).The experiments and density functional theory calculations also revealed the principle of long-range electronic effect to establish a new synthetic strategy of poly(disulfide)s with superior properties favorable for bioelectronics.
基金support from the National Natural Science Foundation of China(Nos.22078274,22373080,and 21903066)the President Fund of Xiamen University(No.20720210046).
文摘With the fast generation of electronic waste(e-waste)and the increasing depletion of metal resources,“urban mining”that can selectively recover gold from secondary resources has attracted great interest.Construction of materials with high extraction capacity and satisfying selectivity in complex aqueous-based matrices still remains challenging.Here,a novel metal-organic framework/polymer composite(Fe-BTC/poly(thioctic acid),denoted as Fe-BTC/pTA)has been newly synthesized and applied for selective gold recovery in different matrices(river water,seawater,and leaching solution of e-waste).Benefiting from the high specific surface area and suitable pore sizes as well as the rational design of active sites,the composite exhibits high adsorption capacity(920 mg/g),high removal efficiency(>99%),fast kinetics(below 0.1 ppb within 10 min),and good applicability in complex matrices,which are better than those of most reported sulfur-containing adsorbents.Solid-state metallic gold with high purity can be effectively enriched due to the high recyclability and long-term stability of the composite.The material after adsorption can be further applied as a heterogeneous catalyst for water remediation due to the in situ generated gold nanoparticles by the redox reaction between Au(III)ions and the S-containing groups in the composites.
基金supported by the National Natural Science Foundation of China(22238002 and 22208047)the China Postdoctoral Science Foundation(2024T170086 and 2022M720639)+1 种基金the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)the Fundamental Research Funds for the Central Universities(DUT22LAB610)。
文摘Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermally mediated in situ repair and encapsulation strategy to construct high-performance PSCs by incorporating piperazine thioctic acid salt(TAPPZ)as a dopant into the perovskite precursor Thermally dissociated piperazine(PPZ)from TAPPZ integrates microcrystals to form larger grain(>2000 nm),while the carboxylic acid in thioctic acid(TA)and the amine salt in TAPPZ synergistically passivate and transform PbI_(2),significantly reducing its residual amount.Additionally,TAPPZ undergoe thermal self-crosslinking during perovskite annealing,enabling melt-polymerization to form in situ encapsulation for enhanced water resistance.The TAPPZ-incorporated device achieves a remarkable efficiency of 25.65% and exhibits excellent operational stability,retaining over 90% of its initial efficiency after 2000 h under ambient conditions(20-30℃,20%-30% relative humidity).This study provide new insights into the construction of high-performance perovskite solar cells by designing and synthe sizing multifunctional single molecules for in situ repair and encapsulation of perovskites.