To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus...To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.展开更多
Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument f...Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument for antenna array thinning.The algorithm with a deliberately chosen fitness function allows synthesizing thinned linear antenna arrays with low peak sidelobe level(SLL)while maintaining the half-power beamwidth(HPBW)of a full linear antenna array.Based on results from existing papers in the field and known approaches to antenna array thinning,a classification of thinning types is introduced.The optimal thinning type for a linear thinned antenna array is determined on the basis of a maximum attainable SLL.The effect of thinning coefficient on main directional pattern characteristics,such as peak SLL and HPBW,is discussed for a number of amplitude distributions.展开更多
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
Large-element-spacing(LES)antenna arrays present an attractive proposition with their cost-effectiveness and sim-plified structures.However,they often encounter the challenge of high-level grating lobes.This paper pro...Large-element-spacing(LES)antenna arrays present an attractive proposition with their cost-effectiveness and sim-plified structures.However,they often encounter the challenge of high-level grating lobes.This paper proposes a novel meta-lens methodology to effectively address the grating lobe issue in fixed-beam LES arrays.The proposed approach involves strategically positioning a meta-lens above the LES arrays at a suitable vertical distance.This setup enables precise manipulation and compen-sation of the near-field phase,resulting in the suppression or elimination of grating lobes without introducing additional design com-plexity.Comprehensive theoretical analyses,meticulous design calculations employing efficient numerical methods,rigorous field simulations,and practical experiments are conducted.The results demonstrate that our meta-lens solution achieves significant grating-lobe suppressions and substantial gain enhancements with only a marginal increase in system profile or volume.The proposed meta-lens approach is versatile and applicable to various LES antenna arrays,including sparse/thinned arrays,regardless of their size,element spacing,and configuration(uniform or non-uniform,periodic or aperiodic).展开更多
基金the National Natural Science Foundation of China(No.51474100)the Youth Science Fund of Heilongjiang Province in China(No.QC2010023)the Youth Outstanding Ability Program in Heilongjiang University of Science and Technology
文摘To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.
文摘Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument for antenna array thinning.The algorithm with a deliberately chosen fitness function allows synthesizing thinned linear antenna arrays with low peak sidelobe level(SLL)while maintaining the half-power beamwidth(HPBW)of a full linear antenna array.Based on results from existing papers in the field and known approaches to antenna array thinning,a classification of thinning types is introduced.The optimal thinning type for a linear thinned antenna array is determined on the basis of a maximum attainable SLL.The effect of thinning coefficient on main directional pattern characteristics,such as peak SLL and HPBW,is discussed for a number of amplitude distributions.
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
基金National Natural Science Foundation of China(Grant Nos.62071187,62071125,and 62301162)Natural Science Foundation of Fujian Province,China(Grant No.2023J01058)+1 种基金Industry-Education Cooperation Project in Fujian Province,China(Grant No.2022H6018)Fujian Province Major Special Topic Project(Grant No.2022HZ026007).
文摘Large-element-spacing(LES)antenna arrays present an attractive proposition with their cost-effectiveness and sim-plified structures.However,they often encounter the challenge of high-level grating lobes.This paper proposes a novel meta-lens methodology to effectively address the grating lobe issue in fixed-beam LES arrays.The proposed approach involves strategically positioning a meta-lens above the LES arrays at a suitable vertical distance.This setup enables precise manipulation and compen-sation of the near-field phase,resulting in the suppression or elimination of grating lobes without introducing additional design com-plexity.Comprehensive theoretical analyses,meticulous design calculations employing efficient numerical methods,rigorous field simulations,and practical experiments are conducted.The results demonstrate that our meta-lens solution achieves significant grating-lobe suppressions and substantial gain enhancements with only a marginal increase in system profile or volume.The proposed meta-lens approach is versatile and applicable to various LES antenna arrays,including sparse/thinned arrays,regardless of their size,element spacing,and configuration(uniform or non-uniform,periodic or aperiodic).